前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >神经网络的基本原理

神经网络的基本原理

原创
作者头像
用户8093107
修改于 2020-12-25 06:33:36
修改于 2020-12-25 06:33:36
1.7K0
举报
  • 人工神经网络的概念

人工神经网络(Artificial Neural Networks,简写为ANNs),也简称为神经网络(NNs)或称作连接模型(Connection Model)。

它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。

可以理解为,人工神经网络就是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

真正的神经元

神经元大致可以分为树突、突触、细胞体和轴突。树突为神经元的输入通道,其功能是将其他神经元的动作电位传递至细胞体。其他神经元的动作电位借由位于树突分支上的多个突触传递至树突上。

人工神经网络的结构图

每一个神经元都有一些神经元作为其输入,又是另一些神经元的输入,数值向量就像是电信号,在不同神经元之间传导,每一个神经元只有满足了某种条件才会发射信号到下一层神经元

  • 神经网络常用于分类

如何对以下情况进行分类呢

垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。

疾病判断:病人到医院去做了一大堆肝功、尿检测验,把测验结果送进一个机器里,机器需要判断这个病人是否得病,得的什么病。

猫狗分类:有一大堆猫、狗照片,把每一张照片送进一个机器里,机器需要判断这幅照片里的东西是猫还是狗

分类器

这种能自动对输入的变量进行分类的机器,就叫做分类器。分类器的输入是一个数值向量,叫做特征(向量)。

人工神经网络的训练

人工神经网络的训练依靠反向传播算法

最开始输入层输入特征向量,网络层层计算获得输出,输出层发现输出和正确的类号不一样,这时它就让最后一层神经元进行参数调整,最后一层神经元不仅自己调整参数,还会勒令连接它的倒数第二层神经元调整,层层往回退着调整。经过调整的网络会在样本上继续测试,如果输出还是老分错,继续来一轮回退调整,直到网络输出满意为止。

简单而言,

无监督训练就是,输入未带有类别标签的特征向量。

有监督训练就是,输入带有类别标签的特征向量。

训练的目的就是为了得到一个合适的参数(权重)W

大部分情况下,每个神经元节点的参数W是有差异的

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
人工神经网络真的像神经元一样工作吗?
人工神经网络和机器学习已经成为大众媒体的热门主题。智能机器这一想法勾起了很多人的想象,而且人们特别喜欢把它和人类放一起比较。特别是有一个关于人工智能的底层机制的基础问题经常出现——这些人工神经网络的工作方式真的和我们大脑中的神经元相似吗?
崔庆才
2019/09/04
1.2K0
人工神经网络真的像神经元一样工作吗?
神经网络是如何工作的?
作为一名程序员,我们习惯于去了解所使用工具、中间件的底层原理,本文则旨在帮助大家了解 AI 模型的底层机制,让大家在学习或应用各种大模型时更加得心应手,更加适合没有 AI 基础的小伙伴们。
数据STUDIO
2023/12/13
3720
神经网络是如何工作的?
什么是人工神经网络,其有哪些应用?
当你阅读这篇文章时,你身体的哪个器官正在考虑它?当然是大脑!但是你知道大脑是如何工作的吗?嗯,它有神经元或神经细胞,它们是大脑和神经系统的主要单位。这些神经元接收来自外部世界的感觉输入,它们对其进行处理,然后提供输出,这些输出可能充当下一个神经元的输入。
用户1418987
2024/09/06
1850
什么是人工神经网络,其有哪些应用?
AI距离匹敌人类大脑还有多远?人工神经网络和生物神经网络最详细对比
【新智元导读】 人工神经网络性能的好坏取决于哪些要素?取得了哪些进展,最新发展趋势是什么?通过与生物神经网络的对比,本文带来对人工神经网络的深度介绍。 能够学习被认为是智能生物的一大标志。机器学习现在有能力从数据集中学习和推断,从而完成复杂的任务,比如对以前从未见过的物体进行分类。 机器学习与人类学习有着惊人的相似和重要的差异。通过比较和对比生物与人工智能如何学习,我们可以建立一个更完善的架构。 从神经元说起 在生物神经网络中,学习源自于大脑中无数神经元之间的连接。大脑接触到新的刺激后,这些神经元之间的连
新智元
2018/03/22
9600
AI距离匹敌人类大脑还有多远?人工神经网络和生物神经网络最详细对比
【机器学习】如何简单形象又有趣地讲解神经网络是什么?
这种能自动对输入的东西进行分类的机器,就叫做分类器。 分类器的输入是一个数值向量,叫做特征(向量)。在第一个例子里,分类器的输入是一堆0、1值,表示字典里的每一个词是否在邮件中出现,比如向量(1,1,0,0,0......)就表示这封邮件里只出现了两个词abandon和abnormal;第二个例子里,分类器的输入是一堆化验指标;第三个例子里,分类器的输入是照片,假如每一张照片都是320*240像素的红绿蓝三通道彩色照片,那么分类器的输入就是一个长度为320*240*3=230400的向量。 分类器的输出也是数值。第一个例子中,输出1表示邮件是垃圾邮件,输出0则说明邮件是正常邮件;第二个例子中,输出0表示健康,输出1表示有甲肝,输出2表示有乙肝,输出3表示有丙肝等等;第三个例子中,输出0表示图片中是狗,输出1表示是猫。 分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本,人为标记上正确分类结果,然后用这些标记好的数据训练分类器,训练好的分类器就可以在新来的特征向量上工作了。
zenRRan
2018/07/25
4600
【机器学习】如何简单形象又有趣地讲解神经网络是什么?
深度 | 生物神经网络基础:从尖峰放电神经元谈起
选自Jack Terwilliger's Blog 作者:Jack Terwilliger 机器之心编译 参与:Panda 人工神经网络在很多领域都取得了突破性进展,这项技术的最初灵感源自生物神经网络。作为我们人类智能的来源,生物神经系统或许还能给我们的人工智能创造之路带来新的启迪。MIT 自动驾驶汽车和人工智能方向的副研究员 Jack Terwilliger 近日在自己的博客上发布了其系列文章《生物神经网络》的第一篇,对生物神经元的基本信息以及常见的模型进行了介绍。机器之心对本文进行了编译。原文中还包含一
机器之心
2018/06/08
2K0
人工神经网络太简陋了,《Science》新作揭露,神经元树突也隐含计算能力
目前对于计算机科学家来讲,人工神经网络构建,往往基于这样一个概念:神经元是一个简单的、非智能的开关,神经网络的信息处理来源于数万(数万亿)个神经元之间的连接。
AI科技评论
2020/02/14
7100
人工神经网络太简陋了,《Science》新作揭露,神经元树突也隐含计算能力
人工神经网络到底能干什么?到底在干什么?
早在1943 年,神经科学家和控制论专家Warren McCulloch 与逻辑学家Walter Pitts就基于数学和阈值逻辑算法创造了一种神经网络计算模型。其中最基本的组成成分是神经元(Neuron)模型,即上述定义中的“简单单元”(Neuron 也可以被称为Unit)。在生物学所定义的神经网络中(如图1所示),每个神经元与其他神经元相连,并且当某个神经元处于兴奋状态时,它就会向其他相连的神经元传输化学物质,这些化学物质会改变与之相连的神经元的电位,当某个神经元的电位超过一个阈值后,此神经元即被激活并开始向其他神经元发送化学物质。Warren McCulloch 和Walter Pitts 将上述生物学中所描述的神经网络抽象为一个简单的线性模型(如图2所示),这就是一直沿用至今的“McCulloch-Pitts 神经元模型”,或简称为“MP 模型”。
博文视点Broadview
2020/06/11
8780
人工神经网络到底能干什么?到底在干什么?
惊悚!人脑与卷积神经网络的诡异对应,识别三维图形反应模式非常相似
在人脑中,视觉信息穿过多个皮质,每个皮质都解释图像的不同方面,最终将我们对周围世界的感知拼凑在一起。
新智元
2020/10/29
6550
Nature子刊:大脑学习也靠反向传播?Hinton等用新一代反向传播算法模拟神经网络
反向传播全称叫“误差反向传播”,英文Backpropagation,缩写为BP算法。作为训练神经网络的基本算法之一,反向传播对于新智元的程序员读者们来说一定不陌生。
新智元
2020/04/23
1.2K0
Nature子刊:大脑学习也靠反向传播?Hinton等用新一代反向传播算法模拟神经网络
[Python人工智能] 一.白话神经网络和AI概念入门普及
从本篇文章开始,作者正式开始讲解Python深度学习、神经网络及人工智能相关知识,希望您喜欢。
Eastmount
2021/12/02
4020
[Python人工智能] 一.白话神经网络和AI概念入门普及
人工神经网络是什么
人工智能的主流研究方法是连接主义,通过人工构建神经网络的方式模拟人类智能。 人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。 人工神经网络借鉴了生物神经网络的思想,是超级简化版的生物神经网络。以工程技术手段模拟人脑神经系统的结构和功能,通过大量的非线性并行处理器模拟人脑中众多的神经元,用处理器复杂的连接关系模拟人脑中众多神经元之间的突触行为。
用户7353950
2022/05/10
8040
人工神经网络是什么
大脑只需单个神经元就可进行XOR异或运算,Science新研究揭开冰山一角,引发热议
在机器学习中,异或(XOR)这样的非线性问题一直需要多层神经网络来解决。科学家一直以为,即使在人类大脑中,XOR运算也需要多层神经元网络才能计算。
量子位
2020/02/12
6590
究竟什么是神经网络?这或许是最简单有趣的解释
先来认识下真正的神经元。 图 1: 典型神经元的结构(来自维基百科 “树突” 词条) 神经元大致可以分为树突、突触、细胞体和轴突。树突为神经元的输入通道,其功能是将其他神经元的动作电位传递至细胞体。
AI研习社
2018/03/28
6800
究竟什么是神经网络?这或许是最简单有趣的解释
吴恩达《神经网络与深度学习》精炼笔记(5)-- 深层神经网络
上节课我们主要介绍了浅层神经网络。首先介绍神经网络的基本结构,包括输入层,隐藏层和输出层。然后以简单的2 layer NN为例,详细推导了其正向传播过程和反向传播过程,使用梯度下降的方法优化神经网络参数。同时,我们还介绍了不同的激活函数,比较各自优缺点,讨论了激活函数必须是非线性的原因。最后介绍了神经网络参数随机初始化的必要性,特别是权重W,不同神经元的W不能初始化为同一零值。本节课是对上节课的延伸和扩展,讨论更深层的神经网络。
红色石头
2022/01/12
4920
吴恩达《神经网络与深度学习》精炼笔记(5)-- 深层神经网络
无处不在的人工神经网络:机器人拥有意识的关键
机器人、语音识别、人脸识别、自动驾驶……随着科技的发展,我们的身边正被人工智能所包围。与此同时,关于“机器人是否会有意识”的话题也渐渐受到人们的关注,一部分人认为未来的机器人将会拥有自我意识,还有一部分人则认为这是一个难以完成的任务。 说到“意识”的问题,人类之所以有意识,关键还是在于“生物大脑”存在。以此作比,机器人要想有意识,就得先有一个“大脑”,也就是所谓的“人工神经网络”。 什么是人工神经网络? 人工神经网络,常常简称为神经网络,是以计算机网络系统模拟生物神经系统的智能计算系统,是对人脑或自然神经网
镁客网
2018/05/29
1.1K0
一文了解神经网络工作原理
深度学习是机器学习中重要分支之一。它的目的是教会计算机做那些对于人类来说相当自然的事情。深度学习也是无人驾驶汽车背后的一项关键性技术,可以帮无人车识别停车标志、区分行人与路灯柱。它是手机、平板、电视和免提扬声器等设备实现语音控制的关键。深度学习近期以其前所未有的成果获得了广泛关注。
小白学视觉
2020/07/20
1.6K0
人工神经网络简介
我在上学的时候非常讨厌生物学,却热爱数学。在经过很长一段时间之后,我现在终于开始接触一个将数学和生物学结合在一起的领域:受生物神经网络启发而诞生的人工神经网络(ANN)。虽然你可能会觉得这样说很奇怪,但这就是我对人工神经网络的定义。我们在这里所谈的生物学,基本上是研究大脑或者神经系统。人工智能模仿神经系统如何工作。由于大数据的加持,人工神经网络最近非常受欢迎。事实上,我的一个同事说,如果没有大数据,你无法完成人工神经网络或任何机器学习算法。但当然,我不相信他并决定亲自试一试。所以,这篇博文是我与人工智能的第一次互动。
PALIN
2018/02/01
6810
人工神经网络简介
启示AGI之路:神经科学和认知心理学大回顾 全译上
A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence
CreateAMind
2024/07/05
4300
启示AGI之路:神经科学和认知心理学大回顾 全译上
七年终登Science封面:最强大脑皮层神经网络重建,揭示迄今哺乳动物最大神经线路图
最新Science杂志封面,发布了知名的德国马克斯·普朗克脑研究所的最新脑科学成果:
量子位
2019/12/05
6800
七年终登Science封面:最强大脑皮层神经网络重建,揭示迄今哺乳动物最大神经线路图
推荐阅读
相关推荐
人工神经网络真的像神经元一样工作吗?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档