前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >如何成为一名合格的数据科学家?这5个要点一定要掌握

如何成为一名合格的数据科学家?这5个要点一定要掌握

作者头像
CDA数据分析师
发布于 2019-10-21 08:20:45
发布于 2019-10-21 08:20:45
3930
举报
文章被收录于专栏:CDA数据分析师CDA数据分析师
作者:彭鸿涛 张宗耀 聂磊

来源:大数据DT(ID:bigdatadt)

导读:大数据时代方兴未艾,人工智能时代又呼啸而至。在人工智能时代,将数据的价值发挥出来的要素有资金、数据、平台、技术、人员等。数据科学家是人员要素中最为重要的部分,是需要企业非常重视的。

如何成为一名合格的数据科学家?本文将继续围绕这个问题展开探讨,主要内容包括数据科学家自身发展的方向、组织结构,以及如何体现出价值。

01 数据科学家的工作模式与组织结构

数据科学家需要与业务专家一起工作才能发挥最大价值。实际工作中两种角色如何配合,取决于是采用业务驱动的模式还是数据驱动的模式。

1. 数据驱动还是业务驱动

业务驱动的特点是业务人员主导数据分析需求的提出、结果的应用,在业务中应用数据洞察;而数据驱动的特点是更看重主动应用数据分析手段,从数据洞察发起业务、改善业务,当然在业务执行时也需要广泛应用数据洞察。在较新的业务领域采用数据驱动比较适合,已有复杂业务则采用业务驱动较好。

然而从自身能力的发展、数据驱动逐渐成为主要的工作模式的情况来看,数据科学家需要思考如何将数据驱动的模式做得更好,并且愿意承担更多责任。所以,除了算法、用法等基本技能,还需要考虑如何改善业务。

下图所示的职责占比只是示意,其实最核心的是由哪种角色来主导,在工作中也未见得业务专家不能主导数据驱动的模式。从业务结果的角度来看,所谓业务驱动和数据驱动只是到达一个既定目标时不同的工作方式而已。在实际的业务中也不会分工非常明确,即不会限定业务人员只能做什么或数据科学家只能做什么,只有相互无缝协作才是最佳的工作模式。

▲业务专家与数据科学家的两种配合方式

2. 数据科学家团队的组织结构

数据科学家团队的组织结构关系到数据应用的效率、管理的效率、个人的发展等诸多方面,企业在设置这个组织结构时需要认真考虑。每个企业的实际情况不同,可以采用不同的方法。数据科学家的组织结构一般分两种,即分散式结构集中式结构

分散式结构是数据科学家属于确定的业务部门,这样的组织结构的好处是其可以紧密地与业务人员合作,将业务问题转换为高效的数据分析任务。

但是其也有不足,一方面数据分析的知识积累是在个人身上,而不是在团队,另外一方面就是因为角色的限制使得业务部门内的数据科学家没有上升空间。业务部门内的数据科学家若要在职业道路上继续前进,要么离开,要么担任其他角色。一旦发生数据科学家的人事变化,这对团队稳定、知识积累等都是不利的。

集中式的数据科学家组织结构就是跨业务条线而成立独立的专门做数据分析的结构。这样的组织结构的好处就是团队相对稳定,给成员提供了不断成长的空间,也避免了知识积累的流失。

但是其也有不足,由于数据科学家脱离业务部门而独立存在,导致团队成员对业务的理解不够深入,模型的产出可能效率低下。业务部门也可能只将其看作支持部门,而不会在实际业务中有太多引入。

企业在构架数据科学家组织架构时,也可采用混合的结构。即使是集中式的组织结构,其汇报的层级也可能不同。没有所谓明确的业界标准的说法,因地制宜的做法才是最实际的。

02 数据科学家的工作方法要点

数据科学家的核心任务之一是通过数据分析手段将数据洞察应用在实际业务中,并能产生有效的结果。数据科学家在实际工作中需要注意以下要点,以确保上述目标的达成。

1. 开始工作以前确保具备成功要件

在开始一件工作前,最好先明确一下业务场景、数据可获得性、数据质量等重要信息。在很多情况下,会出现因数据不支持无法进行细致分析、模型结果很好但是落地应用时没有对应的资源支持、数据分析只是探索没有对应的使用场景等问题。这些因素会严重影响数据分析的价值。

笔者作为顾问给多个客户实施数据分析项目时,就遇到过上述的问题。从客户的角度来讲,其关心的是业务问题的解决,并不会过多细致地考虑实施过程的细节。只有努力地尝试去做,才能发现有些问题会严重阻碍数据分析的进行,这也会影响数据分析的最终效果。

2. 同时输出两种价值

假设要通过数据分析手段改善某业务问题,如构建预测模型筛选高价值、高响应率的客户,即使是在目标非常明确的情况下,数据科学家也要在做的过程中保证两种输出结果。

(1)重要发现

数据分析过程中势必要进行数据提取、数据处理、数据探查等一系列基础工作。在这些基础工作的过程中,往往会隐藏着有巨大业务价值的信息。比如,笔者的团队在给某金融机构构建高端客户的相关模型时发现一些信息,如“大部分客户只持有一类理财产品且在半年内没有交易活动”,这些信息对于后期的营销策略制定至关重要。

所以,数据科学家在实际工作中需保持“业务敏感性”,对于数据背后的业务故事保持好奇心,同时将一些重要的数据发现协同模型结果一并输出,这可以大大提高分析主题的价值。

(2)模型结果

给定分析主题,目标模型结果就可以基本确定,如寻找高价值客户就是模型输出一个名单,风险预警就是给出风险评分以及原因。这是模型输出的最基本形式。

在实际的模型实施应用中,业务人员会经常以挑剔的眼光来看待模型,并且基于模型结果总是有不同的疑惑需要数据科学家来解答。典型的疑惑如“聚类分析模型确实将客户分了几个类别,但是我还是不知道该如何营销这些客户”“社交网络分析模型给出了潜在的高价值客户名单,但这些信息不足以让营销人员开展营销”。

出现这种情况时,一种简单的做法就是和业务人员深入讨论,梳理出他们的关注点,然后将对应的指标从数据库中提取出来,作为模型输入的补充一并交给业务人员。

从本质上来讲,出现业务人员疑惑的原因是“业务人员期待模型输出决策而不是名单”以及团队缺乏将模型输出转换为营销决策的能力。数据科学家也需要具备将模型结果转换为业务决策的能力。

3. 充满想象力地开展工作

算法能做到什么是数学范畴的知识,数据科学家的核心工作就是将业务需求转换为一系列的数据分析实践过程。若将各个算法看作一个个组件,那么用一个算法来解决问题还是用多个算法的组合来解决问题,需要数据科学家的想象力和不断尝试。

笔者的团队曾给某客户构建模型时,其需求是“根据客户持有产品的现状推荐产品,达到交叉销售的目的”。这是一个非常不具体的需求,能做的范围很大,能用的算法工具也很多。

最后我们采用的是构建“客户聚类与产品聚类的交叉分布以及迁移矩阵,并据此来展开不同目的营销”,若向上销售则可推荐同类产品,交叉销售则可推荐不同类的产品。这种做法之前没有实施过,但是结果证明其非常有效,仅在一次营销应用中就带来数十亿的营业额。

4. 按照敏捷的方式来构建模型

数据挖掘过程也可以看作一个项目过程,从项目管理的角度当然可以按照敏捷的方式来进行。数据科学家需要积极主动地汇报分析思路、预期结果、进度等重要信息。时刻与业务人员以及管理人员保持沟通,对需求变化保持开放,将对模型的实际应用会有巨大的帮助。

一般情况下,让一个对数据和业务都不了解的人来构建模型,往往需要数月的时间;但让一个熟悉数据、业务、算法工具的人来建模,则可能只需几天就可以完成。不论哪种程度的人员来建模,都可以按照敏捷的方式来管理建模过程。

笔者与建模方法论CRISP-DM的提出者之一Julian Clinton一起工作过4年时间,在长期的项目实践中我们一直坚持该方法论所倡导的核心要点:紧贴业务、不断探索、以结果为导向、模型在应用后仍需不断调优等。事实证明,这些原则非常有效。CRISP-DM方法论的实施与实施过程中按照敏捷的方式来管理是相辅相成、相得益彰的。

5. 以业务的成果来衡量自己的工作

模型的效果到底如何?数据科学家不应该基于测试集上优异的模型性能指标而洋洋自得,这没有任何意义,顶多代表建模的技巧高超。

模型最终带来的收益是由模型输出、匹配模型输出的业务决策、业务决策实施过程中的资源配置、应用场景的价值大小等综合因素共同决定的。缺少任何一环都会使得模型的价值直线下降。

数据科学家需要积极主动地推进这些环节的相关工作,积极收集模型部署后的监测数据,在“建模—业务决策匹配—业务决策实施—效果监控—模型或决策改进—再部署—再监测”的闭环中积极发挥作用。最终得出的业务结果数据,才是数据科学家真正成就感的源泉。

关于作者:彭鸿涛,德勤企业咨询总监兼首席数据科学家,德勤全球AI团队核心成员,德勤数字化转型、智慧营销、智慧风控、客户体验等核心咨询服务方案的资深顾问。

张宗耀,上海全应科技有限公司资深数据科学家,前华为企业智能部门资深数据科学家,前IBM SPSS 算法组件团队资深算法工程师。

聂磊,陕西万禾数字科技有限公司CTO,前IBM SPSS 资深数据科学家,前IBM Watson Analytics数据分析引擎技术主管及架构师。

本文摘编自《增强型分析:AI驱动的数据分析、业务决策与案例实践》,经出版方授权发布。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-10-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CDA数据分析师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
在小公司如何做一名成功的数据科学家?
本文作者Randy Au,已经在15-150人规模的公司工作了近12年,被冠于“数据分析师、工程师、偶尔还有科学家”的各种头衔。
大数据文摘
2019/03/04
4550
在小公司如何做一名成功的数据科学家?
【数据科学家】2015年最热门的职业:关于数据科学家的概念、职责、技能素养和学习资源完全手册
你是精通数学、擅长Python或者R并对某一特定行业有着深入理解的Geek么? 如果你的答案是Yes,不妨考虑一下21世纪最性感的职业——数据科学家。 领英最近评选出了2014年前25大最受欢迎职场技
陆勤_数据人网
2018/02/26
9590
【数据科学家】2015年最热门的职业:关于数据科学家的概念、职责、技能素养和学习资源完全手册
独家专访 | 揭秘LinkedIn总部数据科学战队:技术强者常有,顶级团队胜在软实力
作者 | 魏子敏,Yawei Xia 薛娅菲和Aileen对本文亦有贡献 *本文为清华数据科学研究院联合大数据文摘发起的《数据团队建设全景报告》系列专访的第一篇内容。 从某种程度上讲,目前硅谷乃至全球最火爆的职业【Data Scientist】始于LinkedIn。 2008年,LinkedIn的数据科学团队负责人DJ Patil 和Facebook的Jeff Hammerbacher分别建立了全世界前两个真正意义上的数据科学团队,并且开始用“数据科学家(data scientist)这个词来描述他们的工作
大数据文摘
2018/05/23
9490
如何成为一名数据科学家 | 面试篇(附视频中字)
CDA字幕组 编译整理 本文为 CDA 数据分析师原创作品,转载需授权 数据科学家是21世纪最性感的职业,在本文中我们将解答如何找一份适合自己的数据科学工作。 讲座完整PDF请前往【https://pan.baidu.com/s/1i5vLroT】进行在线预览 在上一篇给大家带来了HackerEarth的主题演讲如何成为一名数据科学家之学习篇。在这里我们带来了面试篇。 在本篇中Jesse steinweg - woods主要围绕了以下问题: · 如何获得面试机会 · 面试中的小技巧 · 关于数据科学的
CDA数据分析师
2018/02/26
1.1K0
如何成为一名数据科学家 | 面试篇(附视频中字)
【数据科学】需求高涨的数据科学家
从技术方面来看,硬盘价格下降,NoSQL数据库等技术的出现,使得和过去相比,大量数据能够以廉价高效的方式进行存储。此外,像Hadoop这样能够在通用性服务器上工作的分布式处理技术的出现,也使得对庞大的非结构化数据进行统计处理的工作比以往更快速且更廉价。 然而,就算所拥有的工具再完美,它本身是不可能让数据产生价值的。接下来我们还需要能够运用这些工具的人才,他们能够从堆积如山的大量数据中找到金矿,并将数据的价值以易懂的形式传达给决策者,最终得以在业务上实现。具备这些技能的人才,就是在大数据浪潮如火如荼的美国目前
陆勤_数据人网
2018/02/27
1.1K0
【聚焦】2015年最热门的职业:关于数据科学家的概念、职责、技能素养和学习资源完全手册
编者按:本文由SocialBeta根据一亩三分地Warald (Email: iamxiaoning@gmail.com; 博客: http://www.1point3acres.com)数据科学系列
小莹莹
2018/04/23
9210
【聚焦】2015年最热门的职业:关于数据科学家的概念、职责、技能素养和学习资源完全手册
如何成为一名卓越的数据科学家——开篇七剑
关于作者: 杨滔,桃树科技(TaoData)创始人,专注于下一代人工智能产品的研发、应用与商业化。拥有超过十年机器学习研究与应用经验。奥克兰大学机器学习博士,悉尼科技大学博士后。曾任阿里巴巴集团数据科学家,建立淘宝网数据科学团队,首创聚划算爆款模型。曾任F团首席科学家,建立F团数据化运营体系。 “如何成为一名卓越的数据科学家?”是我们讨论的主题。 所谓卓越,不是那些纸上谈兵、喜欢“3V”、“4D”、“大时代”的理论家,也不仅是一名手脚利索的码农去实现别人脑袋中的逻辑。 所谓卓越,是
小莹莹
2018/04/24
8380
如何成为一名卓越的数据科学家——开篇七剑
数据团队做什么,看这篇就够了!
随着企业认识到数据对实现业务目标的决定性力量,大多数企业希望将数据置于其业务和产品战略的主导地位。这就需要建立一个强大的数据团队,能够有效地将其洞察力传播到企业的不同领域。显而易见,这不是一件容易的事。
Datawhale
2021/10/26
1.3K0
谁是数据科学家
随着我们生活在大数据 时代,数据科学正在成为一个非常有前途的领域,可以利用和处理从各种来源生成的大量数据。数据科学本身就是一门广阔的学科,由统计学,数学,编程,计算机科学等专业技能组合组成。数据科学由多种元素,技术和理论组成,包括数学,统计,预测分析,数据建模,数据工程,数据模拟和可视化。
大数据杂货铺
2020/02/11
5390
谁是数据科学家
【数据科学】数据科学家与数据科学
仅仅在几年前,数据科学家还不是一个正式确定的职业,然而一眨眼的工夫,这个职业就已经被誉为“今后十年IT行业最重要的人才”了。 一、数据科学家的起源 "数据科学"(DataScience)起初叫"datalogy "。最初在1966年由Peter Naur提出,用来代替"计算机科学"(丹麦人,2005年图灵奖得主,丹麦的计算机学会的正式名称就叫Danish Society of Datalogy,他是这个学会的第一任主席。Algol 60是许多后来的程序设计语言,包括今天那些必不可少的软件工程工具的原型。
陆勤_数据人网
2018/02/26
1.1K0
【数据科学】数据科学家与数据科学
5年400倍增长, Airbnb首位数据科学家揭秘他们如何运用大数据
当时人们连公司的名字都不会发音,如果不算正在接受心理咨询的哥们儿,实习生,旁边咖啡店里的咖啡师,团队只有大约七个人。我们的公司就在创始人在SOMA的公寓旁。工作环境也十分简陋。
IT阅读排行榜
2018/08/14
5350
5年400倍增长, Airbnb首位数据科学家揭秘他们如何运用大数据
如何成为一名数据科学家?
数据科学是什么?数据分析?机器学习?还是数据工程?答案可能有很多,但也许只有直接与某个公司的数据科学家交流,才能了解该公司是如何看待数据科学的。 数据科学是一个非常抽象的概念。有些人认为它
加米谷大数据
2019/01/09
3520
如何成为一名数据科学家
本文是出自Springboard上面一篇文章的摘录,介绍了如果想成为一名数据科学家,需要掌握哪些技能,熟练使用哪些工具,以及如何对数据进行处理等。 数据科学技能 大多数数据科学家每天都使用组合技能,其
CSDN技术头条
2018/02/13
8500
如何成为一名数据科学家
创业公司什么阶段需要数据科学家?
Instacart数据科学副总裁Jeremy Stanley和前LinkedIn数据领导Daniel Tunkelang的这篇文章,可以解答你的所有问题!
IT阅读排行榜
2018/08/15
2980
创业公司什么阶段需要数据科学家?
大咖 | “大数据之父”达文波特:成功的数据科学家不一定要有研究生学位
大数据文摘作品 作者:托马斯·H·达文波特 2006年6月,乔纳森•高德曼(Jonathan Goldman)进入商务社交网站LinkedIn工作。作为斯坦福大学物理学博士,他醉心于无处不在的链接和丰富的用户资料。虽然这两者通常只能形成混乱的数据和浅显的分析,但当他着手挖掘人际联系时,却从中发现了“新大陆”。 他开始构建理论、检验预设,并研究出了模型。通过这些模型,他可以预测出某账号所归属的人际网络。高德曼觉得,在探索基础之上形成的新功能也许能为用户提供价值。 幸运的是,LinkedIn的联合创始人兼时任
大数据文摘
2018/05/24
5350
数据科学最常用流程CRISP-DM,终于有人讲明白了
作者:约翰·凯莱赫(John D. Kelleher)、布伦丹·蒂尔尼(Brendan Tierney)
前端黑板报
2019/12/20
5.5K0
数据科学最常用流程CRISP-DM,终于有人讲明白了
你了解数据科学家有几类吗?
大数据文摘翻译作品 作者:VincentGranville 翻译:罗康,阚玺, 孫柒柒 校对:陈洁 如需转载,后台留言申请授权 欢迎熟悉外语(含各种“小语种”)的朋友,加入大数据文摘翻译志愿者团队,分别回复“翻译”和“志愿者”可了解更详细信息。 统计根据不同的领域(生物,营销,产品,金融等)分有多类统计学家,比如:生物统计学家、经济学家、运筹学专家、精算师和商业分析师等。在数据科学领域,也有不同类别的数据科学家。他们首先工作职位不同,比如我的工作职位就是一个数据公司的联合创始人(译者:DataScienc
大数据文摘
2018/05/23
1.2K0
打通数据价值链,百分点数据科学基础平台实现数据到决策的价值转换 | 爱分析调研
随着企业数据规模的大幅增长,如何利用数据、充分挖掘数据价值,服务于企业经营管理成为当下企业数字化转型的关键。
爱分析ifenxi
2023/02/10
4710
【数据科学家】如何成为一名数据科学家?
一、数据科学家的起源 “数据科学”(DataScience)起初叫”datalogy “。最初在1966年由Peter Naur提出,用来代替”计算机科学”(丹麦人,2005年图灵奖得主,丹麦的计算机学会的正式名称就叫Danish Society of Datalogy,他是这个学会的第一任主席。Algol 60是许多后来的程序设计语言,包括今天那些必不可少的软件工程工具的原型。图灵奖被认为是“计算科学界的诺贝尔奖”。) 1996年,International Federation of Classific
陆勤_数据人网
2018/02/27
8230
【数据科学家】如何成为一名数据科学家?
重磅,企业实施大数据的路径
关于转载授权 大数据文摘编辑,内容节选自《大数据管理——企业转型升级与竞争力重塑之道》人民邮电出版社,已获版权方授权。欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 企业实施大数据主要有四个方面的内容: 第一,企业要建立数据文化,企业作决策应该用数据来说话。 第二,企业要建立数据的战略。 第三,企业在数据战略之下组织数据管理团队的能力。 第四,企业实施大数据的技术能力。 企业实施大数
大数据文摘
2018/05/22
3740
推荐阅读
相关推荐
在小公司如何做一名成功的数据科学家?
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档