Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >预训练语言模型(PLM)必读论文清单(附论文PDF、源码和模型链接)

预训练语言模型(PLM)必读论文清单(附论文PDF、源码和模型链接)

作者头像
数据派THU
发布于 2019-10-10 03:39:19
发布于 2019-10-10 03:39:19
1.7K0
举报
文章被收录于专栏:数据派THU数据派THU
本文介绍清华大学NLP给出的预训练语言模型必读论文清单,包含论文的PDF链接、源码和模型等。

[ 导读 ]近两年来,ELMO、BERT等预训练语言模型(PLM)在多项任务中刷新了榜单,引起了学术界和工业界的大量关注。

清华大学NLP在Github项目thunlp/PLMpapers中提供了预训练语言模型必读论文清单,包含了论文的PDF链接、源码和模型等,具体清单如下:

模型:

Deep contextualized word representations. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer. NAACL 2018.

  • 论文:

https://arxiv.org/pdf/1802.05365.pdf

  • 工程:

https://allennlp.org/elmo (ELMo)

Universal Language Model Fine-tuning for Text Classification. Jeremy Howard and Sebastian Ruder. ACL 2018.

  • 论文:

https://www.aclweb.org/anthology/P18-1031

  • 工程:

http://nlp.fast.ai/category/classification.html (ULMFiT)

Improving Language Understanding by Generative Pre-Training. Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. Preprint.

  • 论文:

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

  • 工程:

https://openai.com/blog/language-unsupervised/ (GPT)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. NAACL 2019.

  • 论文: https://arxiv.org/pdf/1810.04805.pdf
  • 代码+模型: https://github.com/google-research/bert

Language Models are Unsupervised Multitask Learners. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. Preprint.

  • 论文: https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
  • 代码: https://github.com/openai/gpt-2 (GPT-2)

ERNIE: Enhanced Language Representation with Informative Entities. Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun and Qun Liu. ACL2019.

  • 论文: https://www.aclweb.org/anthology/P19-1139
  • 代码+模型: https://github.com/thunlp/ERNIE (ERNIE (Tsinghua) )

ERNIE: Enhanced Representation through Knowledge Integration. Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian and Hua Wu. Preprint.

  • 论文: https://arxiv.org/pdf/1904.09223.pdf
  • 代码: https://github.com/PaddlePaddle/ERNIE/tree/develop/ERNIE (ERNIE (Baidu) )

Defending Against Neural Fake News. Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, Yejin Choi. NeurIPS.

  • 论文: https://arxiv.org/pdf/1905.12616.pdf
  • 工程: https://rowanzellers.com/grover/ (Grover)

Cross-lingual Language Model Pretraining. Guillaume Lample, Alexis Conneau. NeurIPS2019.

  • 论文: https://arxiv.org/pdf/1901.07291.pdf
  • 代码+模型: https://github.com/facebookresearch/XLM (XLM)

Multi-Task Deep Neural Networks for Natural Language Understanding. Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao. ACL2019.

  • 论文: https://www.aclweb.org/anthology/P19-1441
  • 代码+模型: https://github.com/namisan/mt-dnn (MT-DNN)

MASS: Masked Sequence to Sequence Pre-training for Language Generation. Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. ICML2019.

  • 论文: https://arxiv.org/pdf/1905.02450.pdf
  • 代码+模型: https://github.com/microsoft/MASS

Unified Language Model Pre-training for Natural Language Understanding and Generation. Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, Hsiao-Wuen Hon. Preprint.

  • 论文: https://arxiv.org/pdf/1905.03197.pdf (UniLM)

XLNet: Generalized Autoregressive Pretraining for Language Understanding. Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. NeurIPS2019.

  • 论文: https://arxiv.org/pdf/1906.08237.pdf
  • 代码+模型: https://github.com/zihangdai/xlnet

RoBERTa: A Robustly Optimized BERT Pretraining Approach. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. Preprint.

  • 论文: https://arxiv.org/pdf/1907.11692.pdf
  • 代码+模型: https://github.com/pytorch/fairseq

SpanBERT: Improving Pre-training by Representing and Predicting Spans. Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, Omer Levy. Preprint.

  • 论文: https://arxiv.org/pdf/1907.10529.pdf
  • 代码+模型: https://github.com/facebookresearch/SpanBERT

Knowledge Enhanced Contextual Word Representations. Matthew E. Peters, Mark Neumann, Robert L. Logan IV, Roy Schwartz, Vidur Joshi, Sameer Singh, Noah A. Smith. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1909.04164.pdf (KnowBert)

VisualBERT: A Simple and Performant Baseline for Vision and Language. Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. Preprint.

  • 论文: https://arxiv.org/pdf/1908.03557.pdf
  • 代码+模型: https://github.com/uclanlp/visualbert

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan Lee. NeurIPS.

  • 论文: https://arxiv.org/pdf/1908.02265.pdf
  • 代码+模型: https://github.com/jiasenlu/vilbert_beta

VideoBERT: A Joint Model for Video and Language Representation Learning. Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, Cordelia Schmid. ICCV2019.

  • 论文: https://arxiv.org/pdf/1904.01766.pdf

LXMERT: Learning Cross-Modality Encoder Representations from Transformers. Hao Tan, Mohit Bansal. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1908.07490.pdf
  • 代码+模型: https://github.com/airsplay/lxmert

VL-BERT: Pre-training of Generic Visual-Linguistic Representations. Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. Preprint.

  • 论文: https://arxiv.org/pdf/1908.08530.pdf

Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training. Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang, Ming Zhou. Preprint.

论文: https://arxiv.org/pdf/1908.06066.pdf

K-BERT: Enabling Language Representation with Knowledge Graph. Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, Ping Wang. Preprint.

论文: https://arxiv.org/pdf/1909.07606.pdf

Fusion of Detected Objects in Text for Visual Question Answering. Chris Alberti, Jeffrey Ling, Michael Collins, David Reitter. EMNLP2019.

论文: https://arxiv.org/pdf/1908.05054.pdf (B2T2)

Contrastive Bidirectional Transformer for Temporal Representation Learning. Chen Sun, Fabien Baradel, Kevin Murphy, Cordelia Schmid. Preprint.

论文: https://arxiv.org/pdf/1906.05743.pdf (CBT)

ERNIE 2.0: A Continual Pre-training Framework for Language Understanding. Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang. Preprint.

  • 论文: https://arxiv.org/pdf/1907.12412v1.pdf
  • 代码: https://github.com/PaddlePaddle/ERNIE/blob/develop/README.md

75 Languages, 1 Model: Parsing Universal Dependencies Universally. Dan Kondratyuk, Milan Straka. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1904.02099.pdf
  • 代码+模型: https://github.com/hyperparticle/udify (UDify)

Pre-Training with Whole Word Masking for Chinese BERT. Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu. Preprint.

  • 论文: https://arxiv.org/pdf/1906.08101.pdf
  • 代码+模型: https://github.com/ymcui/Chinese-BERT-wwm/blob/master/README_EN.md (Chinese-BERT-wwm)

知识蒸馏和模型压缩:

TinyBERT: Distilling BERT for Natural Language Understanding. Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, Qun Liu.

论文: https://arxiv.org/pdf/1909.10351v1.pdf

Distilling Task-Specific Knowledge from BERT into Simple Neural Networks. Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, Jimmy Lin. Preprint.

论文: https://arxiv.org/pdf/1903.12136.pdf

Patient Knowledge Distillation for BERT Model Compression. Siqi Sun, Yu Cheng, Zhe Gan, Jingjing Liu. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1908.09355.pdf
  • 代码: https://github.com/intersun/PKD-for-BERT-Model-Compression

Model Compression with Multi-Task Knowledge Distillation for Web-scale Question Answering System. Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, Daxin Jiang. Preprint.

  • 论文: https://arxiv.org/pdf/1904.09636.pdf

PANLP at MEDIQA 2019: Pre-trained Language Models, Transfer Learning and Knowledge Distillation. Wei Zhu, Xiaofeng Zhou, Keqiang Wang, Xun Luo, Xiepeng Li, Yuan Ni, Guotong Xie. The 18th BioNLP workshop.

  • 论文: https://www.aclweb.org/anthology/W19-5040

Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding. Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao. Preprint.

  • 论文: https://arxiv.org/pdf/1904.09482.pdf
  • 代码+模型: https://github.com/namisan/mt-dnn

Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation. Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. Preprint.

  • 论文: https://arxiv.org/pdf/1908.08962.pdf

Small and Practical BERT Models for Sequence Labeling. Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Arivazhagan, Xin Li, Amelia Archer. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1909.00100.pdf

Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer. Preprint.

  • 论文: https://arxiv.org/pdf/1909.05840.pdf

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. Anonymous authors. ICLR2020 under review.

  • 论文: https://openreview.net/pdf?id=H1eA7AEtvS

分析:

Revealing the Dark Secrets of BERT. Olga Kovaleva, Alexey Romanov, Anna Rogers, Anna Rumshisky. EMNLP2019.

  • 论文: https://arxiv.org/abs/1908.08593

How Does BERT Answer Questions? A Layer-Wise Analysis of Transformer Representations. Betty van Aken, Benjamin Winter, Alexander Löser, Felix A. Gers. CIKM2019.

  • 论文: https://arxiv.org/pdf/1909.04925.pdf

Are Sixteen Heads Really Better than One?. Paul Michel, Omer Levy, Graham Neubig. Preprint.

  • 论文: https://arxiv.org/pdf/1905.10650.pdf
  • 代码: https://github.com/pmichel31415/are-16-heads-really-better-than-1

Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment. Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits. Preprint.

  • 论文: https://arxiv.org/pdf/1907.11932.pdf
  • 代码: https://github.com/jind11/TextFooler

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model. Alex Wang, Kyunghyun Cho. NeuralGen2019.

  • 论文: https://arxiv.org/pdf/1902.04094.pdf
  • 代码: https://github.com/nyu-dl/bert-gen

Linguistic Knowledge and Transferability of Contextual Representations. Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, Noah A. Smith. NAACL2019.

  • 论文: https://www.aclweb.org/anthology/N19-1112

What Does BERT Look At? An Analysis of BERT's Attention. Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning. BlackBoxNLP2019.

  • 论文: https://arxiv.org/pdf/1906.04341.pdf
  • 代码: https://github.com/clarkkev/attention-analysis

Open Sesame: Getting Inside BERT's Linguistic Knowledge. Yongjie Lin, Yi Chern Tan, Robert Frank. BlackBoxNLP2019.

  • 论文: https://arxiv.org/pdf/1906.01698.pdf
  • 代码: https://github.com/yongjie-lin/bert-opensesame

Analyzing the Structure of Attention in a Transformer Language Model. Jesse Vig, Yonatan Belinkov. BlackBoxNLP2019.

  • 论文: https://arxiv.org/pdf/1906.04284.pdf

Blackbox meets blackbox: Representational Similarity and Stability Analysis of Neural Language Models and Brains. Samira Abnar, Lisa Beinborn, Rochelle Choenni, Willem Zuidema. BlackBoxNLP2019.

  • 论文: https://arxiv.org/pdf/1906.01539.pdf

BERT Rediscovers the Classical NLP Pipeline. Ian Tenney, Dipanjan Das, Ellie Pavlick. ACL2019.

  • 论文: https://www.aclweb.org/anthology/P19-1452

How multilingual is Multilingual BERT?. Telmo Pires, Eva Schlinger, Dan Garrette. ACL2019.

  • 论文: https://www.aclweb.org/anthology/P19-1493

What Does BERT Learn about the Structure of Language?. Ganesh Jawahar, Benoît Sagot, Djamé Seddah. ACL2019.

  • 论文: https://www.aclweb.org/anthology/P19-1356

Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT. Shijie Wu, Mark Dredze. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1904.09077.pdf

How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings. Kawin Ethayarajh. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1909.00512.pdf

Probing Neural Network Comprehension of Natural Language Arguments. Timothy Niven, Hung-Yu Kao. ACL2019.

  • 论文: https://www.aclweb.org/anthology/P19-1459
  • 代码: https://github.com/IKMLab/arct2

Universal Adversarial Triggers for Attacking and Analyzing NLP. Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1908.07125.pdf
  • 代码: https://github.com/Eric-Wallace/universal-triggers

The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives. Elena Voita, Rico Sennrich, Ivan Titov. EMNLP2019.

论文: https://arxiv.org/pdf/1909.01380.pdf

Do NLP Models Know Numbers? Probing Numeracy in Embeddings. Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, Matt Gardner. EMNLP2019.

论文: https://arxiv.org/pdf/1909.07940.pdf

Investigating BERT's Knowledge of Language: Five Analysis Methods with NPIs. Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Hagen Blix, Yining Nie, Anna Alsop, Shikha Bordia, Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason Phang, Anhad Mohananey, Phu Mon Htut, Paloma Jeretič, Samuel R. Bowman. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1909.02597.pdf
  • 代码: https://github.com/alexwarstadt/data_generation

Visualizing and Understanding the Effectiveness of BERT. Yaru Hao, Li Dong, Furu Wei, Ke Xu. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1908.05620.pdf

Visualizing and Measuring the Geometry of BERT. Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Viégas, Martin Wattenberg. NeurIPS2019.

  • 论文: https://arxiv.org/pdf/1906.02715.pdf

On the Validity of Self-Attention as Explanation in Transformer Models. Gino Brunner, Yang Liu, Damián Pascual, Oliver Richter, Roger Wattenhofer. Preprint.

  • 论文: https://arxiv.org/pdf/1908.04211.pdf

Transformer Dissection: An Unified Understanding for Transformer's Attention via the Lens of Kernel. Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, Ruslan Salakhutdinov. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1908.11775.pdf

Language Models as Knowledge Bases? Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, Sebastian Riedel. EMNLP2019.

  • 论文: https://arxiv.org/pdf/1909.01066.pdf
  • 代码: https://github.com/facebookresearch/LAMA

参考链接:

https://github.com/thunlp/PLMpapers

-END-

编辑:王菁

校对:林亦霖

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-10-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
编辑精选文章
换一批
「自然语言处理NLP」的“高光时刻” --- 28篇标志性论文
自然语言处理专家elvis在medium博客上发表了关于NLP在2019年的亮点总结。对于自然语言处理(NLP)领域而言,2019年是令人印象深刻的一年。在这篇博客文章中,我想重点介绍一些我在2019年遇到的与机器学习和NLP相关的最重要的故事。我将主要关注NLP,但我还将重点介绍一些与AI相关的有趣故事。标题没有特别的顺序。故事可能包括论文,工程工作,年度报告,教育资源的发布等。
深度学习技术前沿公众号博主
2020/05/18
6420
「自然语言处理NLP」的“高光时刻” --- 28篇标志性论文
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(五)
本次整理的关于QA的八篇paper,主要涉及到增强Ranker-Reader、SearchQA的大型数据集、PullNet集成框架、改进的加权抽样训练策略、开放QA中的Bert模型优化等。(五篇含源码)
ShuYini
2020/03/26
1K0
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(五)
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(二)
本次整理的论文主要偏向于Open-Domain QA,共8篇文章,其中主要涉及到混合注意力方法、预训练模型分析、BERT预训练模型优化、QA数据集、问答跳转等。(前六篇含源码)
ShuYini
2020/03/25
1.1K0
【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
点击上方“专知”关注获取更多AI知识! 【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第四篇专知主题荟萃-自动问答QA知识资料全集荟萃 (入门/进阶/论文/代码/数据/专家
WZEARW
2018/04/09
2.4K0
一文探索“预训练”的奥秘!
2022年下半年开始,涌现出一大批“大模型”的优秀应用,其中比较出圈的当属AI作画与ChatGPT,刷爆了各类社交平台,其让人惊艳的效果,让AI以一个鲜明的姿态,站到了广大民众面前,让不懂AI的人也能直观地体会到AI的强大。大模型即大规模预训练模型,本文就和大家聊一聊 预训练模型的起源与发展。
Datawhale
2023/01/10
1.3K0
一文探索“预训练”的奥秘!
7 Papers | 清华天机芯片;非侵入式脑机接口;ACL 2019论文
1. 标题:Towards artificial general intelligence with hybrid Tianjic chip architecture
机器之心
2019/08/06
6480
7 Papers | 清华天机芯片;非侵入式脑机接口;ACL 2019论文
收藏!编码器中如何融入结构信息?这几篇论文一定不要错过
编码器已经成为了很多 NLP 模型中的基本结构。不管你是做机器翻译,还是做句法分析,不管你是需要得到单词的上下文表示,还是需要得到句子的表示,你都需要一个强有力的编码器。输入一个句子,编码器最终输出每个单词的表示或者整个句子的表示。
godweiyang
2020/03/24
8430
收藏!编码器中如何融入结构信息?这几篇论文一定不要错过
NLP 事件抽取综述(中)—— 模型篇
本系列文章主要分享近年来事件抽取方法总结,包括中文事件抽取、开放域事件抽取、事件数据生成、跨语言事件抽取、小样本事件抽取、零样本事件抽取等。主要包括以下几大部分:
zenRRan
2020/12/31
6.8K0
NLP 事件抽取综述(中)——  模型篇
一文概述 2018 年深度学习 NLP 十大创新思路
AI 科技评论按:Sebastian Ruder 是一位 NLP 方向的博士生、研究科学家,目前供职于一家做 NLP 相关服务的爱尔兰公司 AYLIEN,同时,他也是一位活跃的博客作者,发表了多篇机器学习、NLP 和深度学习相关的文章。最近,他基于十几篇经典论文盘点了 2018 年 NLP 领域十个令人激动并具有影响力的想法,并将文章发布在 Facebook 上。AI 科技评论编译如下:
AI研习社
2019/01/09
4090
ACL 2019 最佳论文重磅出炉!华人团队包揽最佳长、短论文
国际计算语言学协会 (ACL,The Association for Computational Linguistics),是世界上影响力最大、最具活力的国际学术组织之一,其会员遍布世界各地。ACL 会议是计算语言学领域的首要会议,广泛涉及自然语言的计算方法及其各类研究领域。计算语言学协会第57届年会,即ACL 2019,于7月28日至8月2日在意大利佛罗伦萨举行。
新智元
2019/08/05
1.3K0
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(七)
本次文章主要介绍了ERNIE-GEN(语言生成任务)、统一预训练语言模型(UniLM)、问答系统数据集(CoQA)、端到端神经生成问答(GENQA)、生成式问答系统评估方法、自编码自回归语言模型(PALM)、答案生成器(KEAG)、生成式问答(gQA)。(四篇含源码)
ShuYini
2020/08/02
2.2K0
如何快速跟进NLP领域最新技术?(文献阅读清单)
在过去的两年中,NLP在各种不同任务和应用上的进展十分迅速。这些进展是由于构建NLP系统的经典范式发生了转变带来的:很长一段时间以来,研究人员都使用预训练的词嵌入(如word2vec或GloVe)来初始化神经网络,然后使用一个特定于任务的架构,该架构使用单个数据集以监督方法训练。
新智元
2019/05/29
1.1K0
【预训练模型】预训练语言模型的前世今生之风起云涌
欢迎大家来到我们预训练语言模型的专题系列分享,本篇推送是该专题的第二篇!预训练语言模型已经成为了NLP研究中一个非常火热的话题,优秀的模型包括BERT,GPT2等都在学术研究、工业领域、算法比赛中大放光彩。
zenRRan
2020/03/05
1.5K0
【预训练模型】预训练语言模型的前世今生之风起云涌
(含源码)「自然语言处理(QA)」基于常识的对话生成&&多任务学习(MTL)&&多实例学习&&结构化语义表示
1、TILE: Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering
ShuYini
2020/08/07
1.7K0
(含源码)「自然语言处理(QA)」基于常识的对话生成&&多任务学习(MTL)&&多实例学习&&结构化语义表示
7 Papers & Radios | ACL 2020获奖论文;贝叶斯深度学习综述
论文 1:Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
机器之心
2020/07/14
7730
7 Papers & Radios | ACL 2020获奖论文;贝叶斯深度学习综述
医学自然语言处理相关资源整理
Yidu-S4K 数据集源自CCKS 2019 评测任务一,即“面向中文电子病历的命名实体识别”的数据集,包括两个子任务:
机器学习AI算法工程
2021/04/02
1.3K0
2022中文命名实体识别最新进展
中文命名实体识别 github:https://github.com/taishan1994/awesome-chinese-ner
西西嘛呦
2022/05/10
2.5K0
自然语言处理顶会EMNLP2019最佳论文出炉!霍普金斯大学、斯坦福获得
【导读】近日,自然语言处理顶会EMNLP 2019 在中国香港落下帷幕。大会颁发了最佳论文奖等多个奖项。来自约翰·霍普金斯大学的研究团队摘得最佳论文奖,其一作为华人学者。
代码医生工作室
2019/11/12
7670
自然语言处理顶会EMNLP2019最佳论文出炉!霍普金斯大学、斯坦福获得
超全必读!NLP 事件抽取综述(下)
本系列文章主要分享近年来事件抽取方法总结,包括中文事件抽取、开放域事件抽取、事件数据生成、跨语言事件抽取、小样本事件抽取、零样本事件抽取等。主要包括以下几大部分:
NewBeeNLP
2021/01/08
3.5K0
大会 | 自然语言处理顶会NAACL 2018最佳论文、时间检验论文揭晓
AI 科技评论按:ACL、EMNLP、NAACL - HLT、COLING 是 NLP 领域的四大顶会。前三者都由 ACL(Association of Computational Linguistics)举办, 其中 NAACL - HLT(Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,一般简称为 NAACL)虽然名义上只是 ACL 北美分会,但在 NLP 圈里也是无可争议的顶级会议,名称中的 HLT 也直接宣告了对于人类语言处理技术的关注。
AI科技评论
2018/07/27
5670
大会 | 自然语言处理顶会NAACL 2018最佳论文、时间检验论文揭晓
推荐阅读
「自然语言处理NLP」的“高光时刻” --- 28篇标志性论文
6420
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(五)
1K0
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(二)
1.1K0
【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
2.4K0
一文探索“预训练”的奥秘!
1.3K0
7 Papers | 清华天机芯片;非侵入式脑机接口;ACL 2019论文
6480
收藏!编码器中如何融入结构信息?这几篇论文一定不要错过
8430
NLP 事件抽取综述(中)—— 模型篇
6.8K0
一文概述 2018 年深度学习 NLP 十大创新思路
4090
ACL 2019 最佳论文重磅出炉!华人团队包揽最佳长、短论文
1.3K0
(含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(七)
2.2K0
如何快速跟进NLP领域最新技术?(文献阅读清单)
1.1K0
【预训练模型】预训练语言模型的前世今生之风起云涌
1.5K0
(含源码)「自然语言处理(QA)」基于常识的对话生成&&多任务学习(MTL)&&多实例学习&&结构化语义表示
1.7K0
7 Papers & Radios | ACL 2020获奖论文;贝叶斯深度学习综述
7730
医学自然语言处理相关资源整理
1.3K0
2022中文命名实体识别最新进展
2.5K0
自然语言处理顶会EMNLP2019最佳论文出炉!霍普金斯大学、斯坦福获得
7670
超全必读!NLP 事件抽取综述(下)
3.5K0
大会 | 自然语言处理顶会NAACL 2018最佳论文、时间检验论文揭晓
5670
相关推荐
「自然语言处理NLP」的“高光时刻” --- 28篇标志性论文
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档