Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >旷视孙剑团队提出AutoML神经架构搜索新方法:单路径One-Shot,更精确更省时

旷视孙剑团队提出AutoML神经架构搜索新方法:单路径One-Shot,更精确更省时

作者头像
量子位
发布于 2019-04-22 09:22:48
发布于 2019-04-22 09:22:48
7770
举报
文章被收录于专栏:量子位量子位
本文转载自旷视研究院

一步法(One-Shot)是一个强大的神经网络模型搜索(Neural Architecture Search/NAS)框架,但是它的训练相对复杂,并且很难在大型数据集(比如 ImageNet)上取得较有竞争力的结果。

本文中,旷视研究院提出一个单路径 One-Shot 模型,以解决训练过程中面对的主要挑战,其核心思想是构建一个简化的超网络——单路径超网络(Single Path Supernet),这个网络按照均匀的路径采样方法进行训练。

所有子结构(及其权重)获得充分而平等的训练。基于这个已训练的超网络,可以通过进化算法快速地搜索最优子结构,其中无需对任何子结构进行微调。

对比实验证明了这一方法的灵活性和有效性,不仅易于训练和快速搜索,并且可以轻松支持不同的复杂搜索空间(比如构造单元,通道数,混合精度量化)和搜索约束(比如 FLOPs,速度),从而便于满足多种需求。这一方法在大型数据集 ImageNet 上取得了当前最优结果。

简介

深度学习终结了手工设计特征的时代,同时解决了权重优化问题。NAS 则旨在通过另一个方法——模型搜索(architecture search),终结人工设计架构。

早期的 NAS 方法使用嵌套式优化,从搜索空间采样出模型结构,接着从头训练其权重,缺点是对于大型数据集来讲计算量过大。新近的 NAS 方法则采用权重共享策略减少计算量。本文提出的超网络则包含所有子结构,只训练一次,所有子结构便可以直接从超网络获得其权重,无需从头训练。即使在大型数据集上,计算也十分高效。

大多数权重共享方法使用连续的搜索空间,将模型结构分布不断参数化。这些参数在超网络训练期间与网络权重进行联合优化。因此可以在优化时进行模型搜索,从分布中采样最优的架构。其公式化表示优雅而理论完备。但是存在两个问题:

  • 第一,超网络的权重深度耦合。目前尚不清楚为什么特定结构的复用权重(inherited weights)依然有效。
  • 第二,联合优化导致了模型参数和超网络权重的进一步耦合。梯度方法的贪婪天性不可避免地在结构分布和超网络权重中引入偏差。这很容易误导模型搜索。精细地微调超参数和优化过程被用于先前方法之中。

One-shot 是一种新范式。它定义了超网络,并以相似的方式做权重复用。但是并没有将模型结构分布参数化。模型搜索从超网络训练中解耦,并且解决步骤是独立的。因此,One-shot 具有序列性。它结合了上述嵌套式和联合式优化方法的优点,因此灵活而高效。

尽管第二个问题已解决,现有 One-shot 并未很好地解决第一个问题。超网络的权重依然耦合。优化依然复杂,并包含敏感的超参数,导致在大型数据集上表现欠佳。

本文方法的动机旨在吸收 One-shot 的优点,克服其缺点。One-shot 成功的关键是使用复用权重的模型的精度可以用来预测从头训练模型的精度。因此,旷视研究院提出,超网络训练应是随机的。这样所有子结构的权重能够被同时且均匀地优化。

为减少超网络的权重耦合,旷视研究院提出一个单路径超网络,在每次迭代训练中只有单路径结构被激活。训练中不需要任何超参数来指导子结构的选择,采用均匀采样的方式,平等对待所有子结构。

本文方法简单而灵活,超网络训练中没有超参数。其简易性允许设计丰富的搜索空间,包括新设计通道单元和位宽单元。模型搜索过程十分高效,因为只需要基于超网络的权重进行前向计算。进化算法则用来轻松支持多种约束。

综合性消融实验及在大型数据集(ImageNet)上的实验证明了这一方法在精度、内存消耗、训练时间、模型搜索的有效性及灵活性方面都表现良好,达到了当前最优的结果。

本文 One-Shot NAS

One-Shot NAS方法回顾

如上所述,耦合式模型搜索和权重优化是存在挑战和问题的。通过回顾发现,早期使用嵌套优化的 NAS 方法在于解决公式 (1) 和 (2) 的优化问题,这不禁引起思考,问题解耦和权重共享的优点是否可以兼得?

这一考虑诞生了所谓的 One-shot 。这些方法依然只训练一次超网络,并允许各结构共享其中的权重。

但是,超网络训练及模型搜索作为先后次序的两个步骤是解耦的。请注意,这不同于嵌套优化或联合优化。

首先,超网络权重被优化为:

相比公式 (4)

,公式 (5) 已经不存在搜索空间的连续参数化,只有网络权重被优化。

其次,搜索部分被表示为:

公式 (6) 与公式 (1) 、 (2) 的最大区别是其权重是预先初始化的。评估

仅需要推理。没有微调或者再训练。因此搜索非常有效。

通过借助进化算法,搜索同样非常灵活。像等式 (3)

对模型结构进行的约束可以精确地满足。并且一旦训练好一个超网络,可在同一超网络内基于不同约束(比如 100ms 和 200ms 延迟)重复搜索。这些特性是先前方法所缺失的,将使 One-Shot NAS 方法对实际任务更具吸引力。

但依然存在一个问题。在等式 (5) 中,超网络训练的图节点权重是耦合的,复用权重是否适用于任意子结构尚不清楚。

单路径超网络和均匀采样

按照基本原理重新出发,会使 One-Shot 范式更有效。在等式 (5) 中,模型搜索成功的关键在于,在验证集中,使用复用权重 (没有额外的微调)的任意子结构的精度是高度可信的。正如等式 (1) 是理想情况,需要权重 近似最优权重 。近似的效果和训练损失函数 被最小化的程度成正比。这推导出一个原则:超网络权重 的优化应当与搜索空间中所有子结构的优化同时进行。这可表示为:

请注意,等式 (7) 是等式 (5) 的实现。在优化的每一步中,子结构是随机采样的,只有对应的权重 被激活和更新。这不仅节省内存空间,而且高效。由此,超网络本身不再是一个有效的网络,而变成一个随机的网络。

为减少节点权重之间的协同适应,旷视研究院提出最大化简化搜索空间 。它只包含单一路径架构,如图 1 所示。

图 1:单一路径超网络架构图

在每次训练时仅保留一个。不存在任何调优。训练在本文实验中收敛良好。

先验分布

很重要。旷视研究员通过实验发现,均匀采样已经足够好。这并不让人惊讶。这是因为实际任务常常期望有多个模型结构,以满足不同的约束。图 2 表明,两个采样方法皆工作良好,均匀约束采样方法表现稍好,本文默认使用它。

表 2:不同采样策略的单路径超网络的进化模型搜索

本文注意到,在优化时根据结构分布采样一个路径已经出现在之前的权重共享方法之中,区别在于,在本文的训练中(等式(7))分布 是一个固定的先验,而在先前方法中,它是可学习和更新的(等式(4)),后者会使超网络权重和结构参数优化高度关联。

请注意,本文并未声明在训练时一个固定的先验分布天生优于优化分布。不存在这样的理论保证。本文更优的结果可能是受益于这一事实:当前优化技术的成熟度不足以满足等式 (4) 中的联合优化需求。

超网络与选择单元

选择单元用于构建一个超网络。图 1 给出了一个实例。一个选择单元包含多个选择。对于本文提出的单路径超网络,每个选择单元一次只调用一个选择。一个路径的获得是通过随机采样所有选择单元实现的。

本文方法的简易性允许定义不同类型的选择单元,以搜索不同的结构变量。具体而言,旷视研究院提出两个全新的选择单元,以支持复杂的搜索空间。

通道数搜索。选择单元旨在搜索一个卷积层的通道数。其主要思想是预先分配一个带有最大通道数的权重张量。在超网络训练期间,系统随机选择通道数并分割出用于卷积的相应的子张量。详见图 4。

图 4:用于通道数搜索的选择单元

混合精度量化搜索。选择单元可以搜索卷积层权重和特征的量化精度。在超网络训练中,特征图的位宽和和权重被随机选取。详见图 5。

图 5:用于混合精度量化搜索的选择单元

基于进化算法的模型搜索

针对等式 (6) 中的模型搜索,先前的 One-shot 工作使用随机搜索。这在大的搜索空间中并不奏效。因此,本文使用了进化算法,同时扬弃了从头开始训练每个子结构的缺点,只涉及推理部分,因此非常高效。详见算法 1。

算法 1:基于进化算法的模型搜索

图 3 描绘了使用进化算法和随机搜索两种方法在进化迭代时的验证集精度。很明显进化算法搜索更有效。

图 3:进化算法搜索对比随机搜索

进化算法可以灵活处理等式 (3) 的不同约束,因为变异和交叉过程是可控的,以产生满足约束条件的合适候选。

总结

单路径超网络、均匀采样训练策略、基于进化算法的模型搜索、丰富的搜索空间设计,上述多种设计使得本文方法简单、高效和灵活。表 1 给出了本文方法与其他权重共享方法的一个全方位、多维度对比结果。

表 1:本文方法对比当前权重共享 SOTA 方法

实验

所有实验是在 ImageNet 上进行的。验证集和测试集的设定遵从 Proxyless NAS [4]。对于超网络的训练,以及(进化搜索之后)最优模型结构的从头再训练,本文使用和 [17] 一样的设定。

构造单元搜索

构造单元(building block)的设计灵感来自手工设计网络的代表作——ShuffleNet v2。表 2 给出了超网络的整体架构。共有 20 个选择单元。

表 2:超网络架构

表 3 给出了结果。为了对比,本文设置了一系列基线,如下:1)只选择一个特定的单元选择;2)从搜索空间中随机选择一些候选;3)使用随机搜索替代本文的进化算法模型搜索。

表 3:构造单元搜索结果

通道数搜索

搜索卷积层的通道数非常有挑战,如图 4 所示,本文提出一个全新的选择单元用于通道数搜索,并首先在基线结构 “all choice 3”(见表 3)做了评估,结果如表 4 (第一部分)所示;为进一步提升精度,本文对构造单元和通道做了联合搜索。结果如表 4(第二部分)所示。

表 4:通道数搜索

对比SOTA方法

虽然表 4 展示了本文方法的优越性,但是由于搜索空间和训练方法的不同,存在不公平对比的可能性。为直接进行对比,本文采用和 Proxyless NAS [4]、FBNet [26] 相同的搜索空间,并在同一设置下再训练已搜索的模型,具体对比结果如表 5 所示:

表 5:本文方法与当前 SOTA NAS 方法的对比

混合精度量化搜索

低功率设备部署模型时需要用到量化技术。但是在通道数与位宽之间找到一个权衡不无挑战。对于这些问题,本文方法可迎刃而解。

这里的搜索空间包含上述的通道搜索空间和混合精度量化搜索空间,后者使用一个全新的选择单元搜索权重和特征图的位宽,如图 5 所示。

在超网络训练中,对于每个选择单元,特征位宽和权重位宽是随机采样的。他们在进化步骤中被确定。具体实验结果如表 6 所示:

表 6:混合精度量化搜索的结果

搜索成本分析

搜索成本在 NAS 中是一件要紧的事。本文给出了与先前方法 [4] [26] 的一些对比结果,如表 7 所示:

表 7:搜索成本

传送门

论文名称:Single Path One-Shot Neural Architecture Search with Uniform Sampling

论文链接:https://arxiv.org/abs/1904.00420

参考文献

[2] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying one-shot architecture search. In International Conference on Machine Learning, pages 549–558, 2018. 1, 2, 3, 4, 5, 6

[3] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Smash: one-shot model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 1, 2, 3, 4, 6

[4] H. Cai, L. Zhu, and S. Han. Proxylessnas: Direct neural ar- chitecture search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018. 1, 2, 3, 4, 5, 6, 7, 8

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vi- sion (ECCV), pages 116–131, 2018. 5, 7

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3):211–252, 2015. 5

[24] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. Mnasnet: Platform-aware neural architecture search for mo- bile. arXiv preprint arXiv:1807.11626, 2018. 1, 2, 3, 5, 7

[26] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. arXiv preprint arXiv:1812.03443, 2018. 1, 2, 3, 4, 5, 6,7,8

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-04-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
旷视AutoML首次曝光!孙剑、危夷晨团队最新力作,效果超谷歌
今天,旷视科技首席科学家孙剑团队发布论文Single Path One-Shot Neural Architecture Search with Uniform Sampling,首次披露AutoML中的重要子领域神经结构搜索的最新成果——单路径One-Shot模型。
新智元
2019/05/08
5470
旷视AutoML首次曝光!孙剑、危夷晨团队最新力作,效果超谷歌
【神经网络搜索】Single Path One Shot
【GiantPandaCV导读】Single Path One Shot(SPOS)是旷视和清华、港科大联合的工作。与之前的工作不同,SPOS可以直接在大型数据集ImageNet上搜索,并且文章还提出了一种缓和权重共享的NAS的解耦策略,让模型能有更好的排序一致性。
BBuf
2021/04/16
9490
干货 | 一文详解神经网络结构搜索(NAS)
AI 科技评论按:近年来,深度学习的繁荣,尤其是神经网络的发展,颠覆了传统机器学习特征工程的时代,将人工智能的浪潮推到了历史最高点。然而,尽管各种神经网络模型层出不穷,但往往模型性能越高,对超参数的要求也越来越严格,稍有不同就无法复现论文的结果。而网络结构作为一种特殊的超参数,在深度学习整个环节中扮演着举足轻重的角色。在图像分类任务上大放异彩的ResNet、在机器翻译任务上称霸的Transformer等网络结构无一不来自专家的精心设计。这些精细的网络结构的背后是深刻的理论研究和大量广泛的实验,这无疑给人们带来了新的挑战。
AI科技评论
2019/07/16
3.3K0
干货 | 一文详解神经网络结构搜索(NAS)
商汤提基于贪心超网络的One-Shot NAS,达到最新SOTA | CVPR 2020
导读:在CVPR 2020上,商汤移动智能事业群-3DAR-身份认证与视频感知组提出了基于贪心超网络的One-Shot NAS方法,显著提升了超网络直接在大规模数据集上的搜索训练效率,并在标准ImageNet数据集上取得了300M FLOPs量级的SOTA。GreedyNAS论文通过提出一种贪心的超网络结构采样训练方法,改善了训练得到的超网络对结构的评估能力,进而帮助搜索算法得到精度更高的结构。
AI科技大本营
2020/04/27
8720
旷视15篇论文入选ECCV 2020(含目标检测/NAS/人体姿态估计等)
8月23-28日,全球计算机视觉三大顶会之一,两年一度的 ECCV 2020(欧洲计算机视觉国际会议)即将召开。受到疫情影响,今年的 ECCV 将以线上形式举办。据官方统计,本次大会有效投稿5025篇,其中有1361篇被接收,录用率为27%,较上届31.8%有所下降。其中,Oral 论文104篇(占总投稿数2%),Spotlight 论文161篇(本届新增,占总投稿数5%),其余为 Poster。
Amusi
2020/08/24
1.1K0
旷视15篇论文入选ECCV 2020(含目标检测/NAS/人体姿态估计等)
旷视张祥雨:神经网络架构设计新思路
深度学习模型在很多任务上都取得了不错的效果,但调参却是一项非常痛苦的事情,大量的超参数和网络结构参数会产生爆炸性的组合。因此最近几年神经网络的架构搜索和超参数优化成为一个研究热点。此外,对于架构设计新方法、新机制的探索,也是当下深度学习研究与落地的重点课题之一。
AI科技评论
2021/01/07
1.3K0
CVPR 2020 |商汤提出基于贪心超网络的One-Shot NAS方法
本文介绍的是CVPR2020论文《GreedyNAS: Towards Fast One-Shot NAS withGreedy Supernet》,作者来自商汤。
AI科技评论
2020/05/14
7920
CVPR 2020 |商汤提出基于贪心超网络的One-Shot NAS方法
CVPR 2020 | 商汤提出基于空间修剪的 NAS 算法
本文介绍的是CVPR2020论文《IMPROVING ONE-SHOT NAS BY SUPPRESSING THE POSTERIOR FADING》,作者来自商汤 AutoML 团队。
AI科技评论
2020/04/26
8650
CVPR 2020 | 商汤提出基于空间修剪的 NAS 算法
APQ:联合搜索网络架构、剪枝和量化策略
本文提出APQ,以便在资源受限的硬件上进行有效的深度学习推理。与以前分别搜索神经体系结构,修剪策略和量化策略的方法不同,本文以联合方式优化它们。为了应对它带来的更大的设计空间问题,一种有前途的方法是训练量化感知的准确性预测器,以快速获得量化模型的准确性,并将其提供给搜索引擎以选择最佳拟合。但是,训练此量化感知精度预测器需要收集大量量化的<model,precision>对,这涉及量化感知的微调,因此非常耗时。为了解决这一挑战,本文建议将知识从全精度(即fp32)精度预测器转移到量化感知(即int8)精度预测器,这将大大提高采样效率。此外,为fp32精度预测器收集数据集只需要通过从预训练的 once-for-all 网络中采样就可以评估神经网络,而无需任何训练成本。ImageNet 上的大量实验证明了联合优化方法的好处。与MobileNetV2 + HAQ 相比,APQ 以相同的精度将延迟降低2倍,能耗降低1.3倍。与单独的优化方法(ProxylessNAS + AMC + HAQ )相比,APQ可提高ImageNet精度2.3%,同时减少GPU数量级和CO2排放量,从而推动了绿色AI在环保方面的前沿。
AI异构
2021/01/07
1.5K0
神经架构搜索方法知多少
研究人员对机器学习和深度学习自动化兴趣的日益增长,促进了神经架构优化的自动化方法的发展。网络架构的选择至关重要,深度学习中的诸多进展也源于它的即时改进。但深度学习技术是计算密集型,而且应用深度学习需要较高的领域相关相关知识。因此,即便这一过程只有部分是自动化的,也有助于研究人员和从业人员更容易地使用深度学习。
机器之心
2019/05/30
7110
CVPR 2021 | AttentiveNAS:通过注意力采样改善神经架构搜索
神经结构搜索(NAS)在设计最先进的(SOTA)模型方面表现出了巨大的潜力,既准确又快速。近年来,BigNAS 等两阶段 NAS 将模型训练和搜索过程解耦,取得了良好的搜索效率。两阶段 NA S在训练过程中需要对搜索空间进行采样,这直接影响最终搜索模型的准确性。尽管均匀抽样的广泛应用是为了简化,但它不考虑模型性能的帕累托前沿,而帕累托前沿是搜索过程中的主要关注点,因此错过了进一步提高模型精度的机会。在这项工作中,我们建议关注于采样网络,以提高性能的帕累托。在训练过程中,本文还提出了有效识别帕累托网络的算法。无需额外的再训练或后处理,就可以通过广泛的 FLOPs 同时获得大量的网络。本文发现的模型家族 AttentiveNAS 模型在 ImageNet 上的准确率最高,从77.3%到80.7%,优于包括 BigNAS、Once-for-All networks 和 FBNetV3 在内的 SOTA 模型。并且本文还实现了 ImageNet 的精度为80.1%,只需491 MFLOPs。
AI异构
2021/03/24
1.5K0
神经结构搜索在机器翻译中的应用
张裕浩,东北大学自然语言处理实验室 2018 级研究生,研究方向包括神经网络结构搜索、机器翻译。
AI科技评论
2019/10/21
8950
神经结构搜索在机器翻译中的应用
干货 | 让算法解放算法工程师——NAS 综述
AutoML(automated machine learning)是模型选择、特征抽取和超参数调优的一系列自动化方法,可以实现自动训练有价值的模型。AutoML 适用于许多类型的算法,例如随机森林,gradient boosting machines,神经网络等。 机器学习最耗费人力的是数据清洗和模型调参,而一般在模型设计时超参数的取值无规律可言,而将这部分过程自动化可以使机器学习变得更加容易。即使是对经验丰富的机器学习从业者而言,这一自动化过程也可以加快速度。
AI科技评论
2018/09/21
1.6K0
干货 | 让算法解放算法工程师——NAS 综述
兼具one-shot与传统NAS优点,Few-shot NAS入选ICML 2021
神经网络搜索(Neuarl Architecture Search)是近年来兴起的热门方向。在这次 ICML 的文章中,我们提出了 Few-shot NAS, 通过分割搜索空间,对分割后的子空间独立建立了一个子超网络(sub-supernet)来预测网络性能。通过建立 one-shot NAS 和传统挨个训练 NAS 的联系,few-shot NAS 巧妙继承了两种方法的优点,兼有 one-shot NAS 的快速和传统 NAS 的准确网络性能评估。大量实验表明 few-shot NAS 是一个简单易行的方法,在不同任务上和数据集上能提升当下几乎所有的 NAS 方法,包括 ImageNet 及 CIFAR-10 的分类任务和 GAN 这样的生成任务等。该文章被 ICML-2021 接收为 long talk。
机器之心
2021/07/14
9210
兼具one-shot与传统NAS优点,Few-shot NAS入选ICML 2021
ICLR 2021 | 美团AutoML论文:鲁棒的神经网络架构搜索 DARTS-
高质量模型的设计和更新迭代是当前 AI 生产开发的痛点和难点,在这种背景下,自动化机器学习(AutoML)应运而生。2017年,谷歌正式提出神经网络架构搜索(Neural Architecture Search,NAS),并成为 AutoML 的核心组成部分。美团技术团队也对AutoML领域进行了积极探索,本文系美团与上海交通大学合作的一篇被深度学习顶会 ICLR 2021 收录的论文解读。
美团技术团队
2021/03/30
7120
ICLR 2021 | 美团AutoML论文:鲁棒的神经网络架构搜索 DARTS-
神经网络架构搜索(NAS)基础入门
网络架构搜索(NAS)已成为机器学习领域的热门课题。商业服务(如谷歌的AutoML)和开源库(如Auto-Keras[1])使NAS可用于更广泛的机器学习环境。在这篇文章中,我们主要探讨NAS的思想和方法,希望可以帮助读者更好地理解该领域并发现实时应用程序的可能性。
deephub
2020/08/03
1.3K0
超越MnasNet、Proxyless:小米开源全新神经架构搜索算法FairNAS
小米 AI 实验室表示,此项研究可为深度学习工程师武器库再添一大利器,目前该团队已开源了模型前向模型搭建及验证代码。
机器之心
2019/07/12
7310
超越MnasNet、Proxyless:小米开源全新神经架构搜索算法FairNAS
CVPR 2020丨基于记忆增强的全局-局部整合网络:更准确的视频物体检测方法
终于把这篇NAS最新的综述整理的survey放了上来,文件比较大,内容比较多。这个NAS的survey是A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions的写作过程中的整理的原材料,文章目前孩还在审稿阶段可以预览。
马上科普尚尚
2020/06/16
7630
CVPR 2020丨基于记忆增强的全局-局部整合网络:更准确的视频物体检测方法
一文讲解自动机器学习(AutoML)!你已经是个成熟的模型了,该学会自己训练了
寄语:让计算机自己去学习和训练规则,是否能达到更好的效果呢?自动机器学习就是答案,也就是所谓“AI的AI”,让AI去学习AI。
Datawhale
2020/04/26
1.7K0
一文讲解自动机器学习(AutoML)!你已经是个成熟的模型了,该学会自己训练了
NAS(神经结构搜索)综述
本文是对神经结构搜索(NAS)的简单综述,在写作的过程中参考了文献[1]列出的部分文献。深度学习技术发展日新月异,市面的书很难跟上时代的步伐,本人希望写出一本内容经典、新颖的机器学习教材,此文是对《机器学习与应用》,清华大学出版社,雷明著一书的补充。该书目前已经重印了3次,收到了不少读者的反馈,对于之前已经发现的笔误和印刷错误,在刚印刷出的这一版中已经做了校正,我会持续核对与优化,力争写成经典教材,由于水平和精力有限,难免会有不少错误,欢迎指正。年初时第二版已经修改完,将于上半年出版,补充了不少内容(包括梯度提升,xgboost,t-SNE等降维算法,条件随机场等),删掉了源代码分析,例子程序换成了python,以sklearn为基础。本书勘误与修改的内容见:
SIGAI学习与实践平台
2019/04/26
2.6K0
NAS(神经结构搜索)综述
推荐阅读
相关推荐
旷视AutoML首次曝光!孙剑、危夷晨团队最新力作,效果超谷歌
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档