前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >简单易学的机器学习算法——Label Propagation

简单易学的机器学习算法——Label Propagation

作者头像
felixzhao
发布2019-01-31 16:48:02
6490
发布2019-01-31 16:48:02
举报
文章被收录于专栏:null的专栏

一、社区划分的概述

对于社区,没有一个明确的定义,有很多对社区的定义,如社区是指在一个网络中,有一组节点,它们彼此都相似,而组内的节点与网络中的其他节点则不相似。更为一般的可以表述为:社区是指网络中节点的集合,这些节点内部连接较为紧密而外部连接较为稀疏。

基于上述的形象的表示,出现了很多的社区划分算法,如前面介绍的Fast Unfolding算法,Fast Unfolding算法是基于模块度的算法,模块度相当于对上述社区的形象描述的一种抽象表示,成为优化的主要目标。

二、Label Propagation算法

1、Label Propagation算法概述

Label Propagation算法是一种基于标签传播的局部社区划分算法。对于网络中的每一个节点,在初始阶段,Label Propagation算法对每一个节点一个唯一的标签,在每一个迭代的过程中,每一个节点根据与其相连的节点所属的标签改变自己的标签,更改的原则是选择与其相连的节点中所属标签最多的社区标签为自己的社区标签,这便是标签传播的含义。随着社区标签的不断传播,最终紧密连接的节点将有共同的标签。

Label Propagation算法最大的优点是其算法过程比较简单,想比较于优化模块度的过程,算法速度非常快。Label Propagation算法利用网络的结构指导标签的传播过程,在这个过程中无需优化任何函数。在算法开始前我们不必要知道社区的个数,随着算法的迭代,在最终的过程中,算法将自己决定社区的个数。

2、Label Propagation算法原理

对于Label Propagation算法,假设对于节点xxx,其邻居节点为x1,x2,⋯,xkx1,x2,⋯,xkx_1,x_2,\cdots ,x_k,对于每一个节点,都有其对应的标签,标签代表的是该节点所属的社区。在算法迭代的过程中,节点xxx根据其邻居节点更新其所属的社区。更新的规则是选择节点xxx的邻居节点中,所属社区最多的节点对应的社区为其新的社区。

上述便是Label Propagation算法的核心概念。在初始节点,令每一个节点都属于唯一的社区,当社区的标签在节点间传播的过程中,紧密相连的节点迅速地取得一致的标签。具体过程如下图所示:

这样的过程不断地持续下去,直到所有可能聚集到一起的节点都具有了相同的社区标签。在传播过程的最终,具有相同社区标签的节点被划到相同的社区中称为一个个独立的社区。

在标签传播的过程中,节点的标签的更新过程可以分为两种,即:

  • 同步更新
  • 异步更新

同步更新是指对于节点xxx,在第ttt代时,根据其所有邻居节点在第t−1t−1t-1代时的社区标签对其标签进行更新。即:

Cx(t)=f(Cx1(t−1),Cx2(t−1),⋯,Cxk(t−1))Cx(t)=f(Cx1(t−1),Cx2(t−1),⋯,Cxk(t−1))

C_x\left ( t \right )=f\left ( C_{x_1}\left ( t-1 \right ),C_{x_2}\left ( t-1 \right ),\cdots ,C_{x_k}\left ( t-1 \right ) \right )

其中,Cx(t)Cx(t)C_x\left ( t \right )表示的是节点xxx在第ttt代时的社区标签。函数fff表示的取的参数节点中所有社区个数最大的社区。同步更新的方法存在一个问题,即对于一个二分或者近似二分的网络来说,这样的结构会导致标签的震荡,如下图所示:

在上图中,两边的标签会在社区标签aaa和社区标签bbb不停地震荡。

对于异步更新方式,其更新公式为:

Cx(t)=f(Cxi1(t),⋯,Cxim(t),Cxi(m+1)(t−1),⋯,Cxik(t−1))Cx(t)=f(Cxi1(t),⋯,Cxim(t),Cxi(m+1)(t−1),⋯,Cxik(t−1))

C_x\left ( t \right )=f\left ( C_{x_{i1}}\left ( t \right ),\cdots ,C_{x_{im}}\left ( t \right ),C_{x_{i(m+1)}}\left ( t-1 \right ),\cdots ,C_{x_{ik}}\left ( t-1 \right ) \right )

其中,邻居节点xi1,⋯,ximxi1,⋯,ximx_{i1},\cdots ,x_{im}的社区标签在第ttt代已经更新过,则使用其最新的社区标签。而邻居节点xi(m+1),⋯,xikxi(m+1),⋯,xikx_{i(m+1)},\cdots ,x_{ik}在第ttt代时还没有更新,则对于这些邻居节点还是用其在第t−1t−1t-1代时的社区标签。

对于节点的更新顺序可以顺序选择。

对于整个迭代过程,理想的情况下是图中节点的社区标签不再改变,此时迭代过程便可以停止。但是这样的定义方式存在一个问题,即对于某个节点,其邻居节点中存在两个或者多个最大的社区标签。对于这样的节点,其所属的社区是随机选取的,这样,按照上述的定义,此过程会一直执行下去。对上述的迭代终止条件重新修改:

迭代的终止条件是:对于每一个节点,在其所有的邻居节点所属的社区中,其所属的社区标签是最大的。

上述的定义可以表示为:如果用C1,⋯,CpC1,⋯,CpC_1,\cdots ,C_p表示社区标签,dCjidiCjd_i^{C_j}表示是节点iii的所有邻居节点中社区标签为CjCjC_j的个数,则算法终止的条件为:对于每一个节点iii,有:

ifihaslabelCmthendCmi≥dCji∀jifihaslabelCmthendiCm≥diCj∀j

if\: i\: has\: label\: C_m\: then\: d_i^{C_m}\geq d_i^{C_j}\: \forall j

这样的停止条件可以使得最终能够获得强壮的社区(Strong Community),但是社区并不是唯一的。对于Strong Community,其要求对于每一个节点,在其社区内部的邻居节点严格大于社区外部的邻居节点,然而Label Propagation算法能够保证对于每一个节点,在其所属的社区内有足够多的邻居节点。

3、Label Propagation算法过程

Label Propagation算法的过程如下:

  • 对网络中的每一节点初始化其所属社区标签,如对于节点xxx,初始化其社区标签为Cx(0)=xCx(0)=xC_x\left ( 0 \right )=x;
  • 设置代数ttt;
  • 对于网络中的节点设置其遍历顺序和节点的集合XXX;
  • 对于每一个节点x∈Xx∈Xx\in X,令Cx(t)=f(Cxi1(t),⋯,Cxim(t),Cxi(m+1)(t−1),⋯,Cxik(t−1))Cx(t)=f(Cxi1(t),⋯,Cxim(t),Cxi(m+1)(t−1),⋯,Cxik(t−1))C_x\left ( t \right )=f\left ( C_{x_{i1}}\left ( t \right ),\cdots ,C_{x_{im}}\left ( t \right ),C_{x_{i(m+1)}}\left ( t-1 \right ),\cdots ,C_{x_{ik}}\left ( t-1 \right ) \right );
  • 判断是否可以迭代结束,如果否,则设置t=t+1t=t+1t=t+1,重新遍历。

三、实验

1、数据描述

实验过程中使用的数据为:社团划分——Fast Unfolding算法中使用的数据,其结构如下所示:

其在Fast Unfolding算法的划分结果为:

  • 社区1:节点0,1,2,3,4,5,6,7
  • 社区2:节点8,9,10,11,12,13,14,15

2、实验代码

代码语言:javascript
复制
#####################################
# Author:zhaozhiyong
# Date:20151205
# Fun:Label Propagation
#####################################
import string

def loadData(filePath):
    f = open(filePath)
    vector_dict = {}
    edge_dict = {}
    for line in f.readlines():
        lines = line.strip().split("\t")

        for i in xrange(2):
            if lines[i] not in vector_dict:
                #put the vector into the vector_dict
                vector_dict[lines[i]] = string.atoi(lines[i])
                #put the edges into the edge_dict
                edge_list = []
                if len(lines) == 3:
                    edge_list.append(lines[1-i]+":"+lines[2])
                else:
                    edge_list.append(lines[1-i]+":"+"1")
                edge_dict[lines[i]] = edge_list
            else:
                edge_list = edge_dict[lines[i]]
                if len(lines) == 3:
                    edge_list.append(lines[1-i]+":"+lines[2])
                else:
                    edge_list.append(lines[1-i]+":"+"1")
                edge_dict[lines[i]] = edge_list
    return vector_dict, edge_dict

def get_max_community_label(vector_dict, adjacency_node_list):
    label_dict = {}
    # generate the label_dict
    for node in adjacency_node_list:
        node_id_weight = node.strip().split(":")
        node_id = node_id_weight[0]
        node_weight = string.atoi(node_id_weight[1])
        if vector_dict[node_id] not in label_dict:
            label_dict[vector_dict[node_id]] = node_weight
        else:
            label_dict[vector_dict[node_id]] += node_weight

    # find the max label
    sort_list = sorted(label_dict.items(), key = lambda d: d[1], reverse=True)

    return sort_list[0][0]

def check(vector_dict, edge_dict):
    for node in vector_dict.keys():
        adjacency_node_list = edge_dict[node]
        node_label = vector_dict[node]
        label_check = {}
        for ad_node in adjacency_node_list:
            node_id_weight = ad_node.strip().split(":")
            node_id = node_id_weight[0]
            if vector_dict[node_id] not in label_check:
                label_check[vector_dict[node_id]] = 1
            else:
                label_check[vector_dict[node_id]] += 1

        sort_list = sorted(label_check.items(), key = lambda d: d[1], reverse=True)

        if node_label == sort_list[0][0]:
            continue
        else:
            return 0

    return 1    

def label_propagation(vector_dict, edge_dict):
    #initial, let every vector belongs to a community
    t = 0
    #for every node in a random order
    while True:
        if (check(vector_dict, edge_dict) == 0):
            t = t+1
            print "----------------------------------------"
            print "iteration: ", t
            for node in vector_dict.keys():
                adjacency_node_list = edge_dict[node]
                vector_dict[node] = get_max_community_label(vector_dict, adjacency_node_list)
            print vector_dict
        else:
            break
    return vector_dict


if __name__ == "__main__":
    vector_dict, edge_dict=loadData("./cd_data.txt")
    print "original community: ", vector_dict
    vec_new = label_propagation(vector_dict, edge_dict)
    print "---------------------------------------------------------"
    print "the final result: "
    for key in vec_new.keys():
        print str(key) + " ---> " + str(vec_new[key])

3、代码解析

上述的实验代码中主要包括444个部分,其一为loadData()函数,其目的是从文件中读入数据,取得点的信息,边的信息;第二个是label_propagation()函数,其目的是Label Propagation算法的整个迭代过程,期中会调用两个函数,即get_max_community_label()函数和check()函数,get_max_community_label()函数的目的是在对每个节点遍历其邻居节点的过程中,选择出最大的社区标签,check()函数的目的是判断算法是否迭代结束。

4、实验结果

若需要PDF版本,请关注我的新浪博客@赵_志_勇,私信你的邮箱地址给我。

参考文献

1 U. N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E 76

(2007) 036106.

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2015年12月05日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、社区划分的概述
  • 二、Label Propagation算法
    • 1、Label Propagation算法概述
      • 2、Label Propagation算法原理
        • 3、Label Propagation算法过程
        • 三、实验
          • 1、数据描述
            • 2、实验代码
            • 3、代码解析
            • 4、实验结果
            • 参考文献
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档