前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >12行Python暴力爬《黑豹》豆瓣短评

12行Python暴力爬《黑豹》豆瓣短评

作者头像
数据科学社区
发布2018-07-30 15:06:41
7790
发布2018-07-30 15:06:41
举报
文章被收录于专栏:大数据杂谈

作者:黄嘉锋 来源:https://www.jianshu.com/p/ea0b56e3bd86

草长莺飞,转眼间又到了三月“爬虫月”。 这时往往不少童鞋写论文苦于数据获取艰难,辗转走上爬虫之路; 许多分析师做舆情监控或者竞品分析的时候,也常常使用到爬虫。

今天,本文将带领小伙伴们通过12行简单的Python代码,初窥爬虫的秘境。

爬虫目标

本文采用requests + Xpath,爬取豆瓣电影《黑豹》部分短评内容。话不多说,代码先上:

代码语言:javascript
复制
import requests; from lxml import etree; import pandas as pd; import time; import random; from tqdm import tqdm
name, score, comment = [], [], []
def danye_crawl(page):
    url = 'https://movie.douban.com/subject/6390825/comments?start=%s&limit=20&sort=new_score&status=P&percent_type='%(page*20)
    response = etree.HTML(requests.get(url).content.decode('utf-8'))
    print('\n', '第%s页评论爬取成功'%(page)) if requests.get(url).status_code == 200 else print('\n', '第%s页爬取失败'(page))
    for i in range(1,21):
        name.append(response.xpath('//*[@id="comments"]/div[%s]/div[2]/h3/span[2]/a'%(i))[0].text)
        score.append(response.xpath('//*[@id="comments"]/div[%s]/div[2]/h3/span[2]/span[2]'%(i))[0].attrib['class'][7])
        comment.append(response.xpath('//*[@id="comments"]/div[%s]/div[2]/p'%(i))[0].text)
for i in tqdm(range(11)): danye_crawl(i); time.sleep(random.uniform(6, 9))
res = pd.DataFrame({'name':name, 'score':score, 'comment':comment},columns = ['name','score','comment']); res.to_csv("豆瓣.csv")

运行以上的爬虫脚本,我们得以见证奇迹

爬虫结果与原网页内容的对比,完全一致

通过tqdm模块实现了良好的交互

工具准备
  • chrome浏览器(分析HTTP请求、抓包)
  • 安装Python 3及相关模块(requests、lxml、pandas、time、random、tqdm) requests:用来简单请求数据 lxml:比Beautiful Soup更快更强的解析库 pandas:数据处理神器 time:设置爬虫访问间隔防止被抓 random:随机数生成工具,配合time使用 tqdm:交互好工具,显示程序运行进度
基本步骤
  1. 网络请求分析
  2. 网页内容解析
  3. 数据读取存储
涉及知识点
  • 爬虫协议
  • http请求分析
  • requests请求
  • Xpath语法
  • Python基础语法
  • Pandas数据处理
爬虫协议

爬虫协议即网站根目录之下的robots.txt文件,用来告知爬虫者哪些可以拿哪些不能偷,其中Crawl-delay告知了网站期望的被访问的间隔。(为了对方服务器端同学的饭碗,文明拿数据,本文将爬虫访问间隔设置为6-9秒的随机数)

豆瓣网站的爬虫协议

HTTP请求分析

使用chrome浏览器访问《黑豹》短评页面https://movie.douban.com/subject/6390825/comments?sort=new_score&status=P,按下F12,进入network面板进行网络请求的分析,通过刷新网页重新获得请求,借助chrome浏览器对请求进行筛选、分析,找到那个Ta

豆瓣短评页面请求分析

通过请求分析,我们找到了目标url为 'https://movie.douban.com/subject/6390825/comments?start=0&limit=20&sort=new_score&status=P&percent_type=',并且每次翻页,参数start将往上增加20 (通过多次翻页尝试,我们发现第11页以后需要登录才能查看,且登录状态也仅展示前500条短评。作为简单demo,本文仅对前11页内容进行爬取)

requests请求

通过requests模块发送一个get请求,用content方法获取byte型数据,并以utf-8重新编码;然后添加一个交互,判断是否成功获取到资源(状态码为200),输出获取状态

请求详情分析

(除了content,还有text方法,其返回unicode字符集,直接使用text方法遇到中文的话容易出现乱码)

Xpath语法解析

获取到数据之后,需要对网页内容进行解析,常用的工具有正则表达式、Beautiful Soup、Xpath等等;其中Xpath又快又方便。此处我们通过Xpath解析资源获取到了前220条短评的用户名、短评分数、短评内容等数据。 (可借助chrome的强大功能直接复制Xpath,Xpath语法学习http://www.runoob.com/xpath/xpath-tutorial.html)

数据处理

获取到数据之后,我们通过list构造dictionary,然后通过dictionary构造dataframe,并通过pandas模块将数据输出为csv文件

结语与彩蛋

本例通过requests+Xpath的方案,成功爬取了电影《黑豹》的部分豆瓣短评数据,为文本分析或其他数据挖掘工作打好了数据地基。 本文作为demo,仅展示了简单的爬虫流程,更多彩蛋如请求头、请求体信息获取、cookie、模拟登录、分布式爬虫等请关注后期文章更新哟。

最后,送上白话文版的代码:

代码语言:javascript
复制
import requests
from lxml import etree
import pandas as pd
import time
import random
from tqdm import tqdm

name, score, comment = [], [], []

def danye_crawl(page):
    url = 'https://movie.douban.com/subject/6390825/comments?start=%s&limit=20&sort=new_score&status=P&percent_type='%(page*20)
    response = requests.get(url)
    response = etree.HTML(response.content.decode('utf-8'))
    if requests.get(url).status_code == 200:
        print('\n', '第%s页评论爬取成功'%(page))
    else:
        print('\n', '第%s页爬取失败'(page))

    for i in range(1,21):
        name_list = response.xpath('//*[@id="comments"]/div[%s]/div[2]/h3/span[2]/a'%(i))
        score_list = response.xpath('//*[@id="comments"]/div[%s]/div[2]/h3/span[2]/span[2]'%(i))
        comment_list = response.xpath('//*[@id="comments"]/div[%s]/div[2]/p'%(i))

        name_element = name_list[0].text
        score_element = score_list[0].attrib['class'][7]
        comment_element = comment_list[0].text

        name.append(name_element)
        score.append(score_element)
        comment.append(comment_element)

for i in tqdm(range(11)):
    danye_crawl(i)
    time.sleep(random.uniform(6, 9))

res = {'name':name, 'score':score, 'comment':comment}
res = pd.DataFrame(res, columns = ['name','score','comment'])
res.to_csv("豆瓣.csv")
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据杂谈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 爬虫目标
  • 工具准备
  • 基本步骤
  • 涉及知识点
  • 爬虫协议
  • HTTP请求分析
  • requests请求
  • Xpath语法解析
  • 数据处理
  • 结语与彩蛋
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档