前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【算法】xgboost算法

【算法】xgboost算法

作者头像
陆勤_数据人网
发布2018-03-27 11:23:00
1.8K0
发布2018-03-27 11:23:00
举报
文章被收录于专栏:数据科学与人工智能

小编邀请您,先思考:

1 XGBoost和GDBT算法有什么差异?

XGBoost的全称是 eXtremeGradient Boosting,2014年2月诞生的专注于梯度提升算法的机器学习函数库,作者为华盛顿大学研究机器学习的大牛——陈天奇。他在研究中深深的体会到现有库的计算速度和精度问题,为此而着手搭建完成 xgboost 项目。xgboost问世后,因其优良的学习效果以及高效的训练速度而获得广泛的关注,并在各种算法大赛上大放光彩。

1.CART

CART(回归树, regressiontree)是xgboost最基本的组成部分。其根据训练特征及训练数据构建分类树,判定每条数据的预测结果。其中构建树使用gini指数计算增益,即进行构建树的特征选取,gini指数公式如式(1), gini指数计算增益公式如式(2):

P_{k}表示数据集中类别的概率,表示类别个数。

注:此处图的表示分类类别。

D表示整个数据集,D_{1}D_{2} 分别表示数据集中特征为的数据集和特征非的数据集,Gini(D_{1}) 表示特征为的数据集的gini指数。

以是否打网球为例(只是举个栗子):

其中,

最小,所以构造树首先使用温度适中。然后分别在左右子树中查找构造树的下一个条件。

本例中,使用温度适中拆分后,是子树刚好类别全为是,即温度适中时去打网球的概率为1。

2.Boostingtree

一个CART往往过于简单,并不能有效地做出预测,为此,采用更进一步的模型boosting tree,利用多棵树来进行组合预测。具体算法如下:

输入:训练集

输出:提升树f_{M}(x)

步骤:

(1)初始化f_{0}(x)=0

(2) 对m=1,2,3……M

a)计算残差

b)拟合残差r_{mi} 学习一个回归树,得到T(x:\theta _{m})

c)更新

(3)得到回归提升树:

例子详见后面代码部分。

3.xgboost

首先,定义一个目标函数:

constant为一个常数,正则项\Omega(f_{t}) 如下,

其中,T表示叶子节点数,W_{j} 表示第j个叶子节点的权重。

例如下图,叶子节点数为3,每个叶子节点的权重分别为2,0.1,-1,正则项计算见图:

利用泰勒展开式

,对式(3)进行展开:

其中,g_{i} 表示L(y_{i},\widehat{y}^{t-1})\widehat{y}^{t-1} 的一阶导数,h_{i} 表示L(y_{i},\widehat{y}^{t-1})\widehat{y}^{t-1} 的二阶导数。L(y_{i},\widehat{y}^{t-1}) 为真实值与前一个函数计算所得残差是已知的(我们都是在已知前一个树的情况下计算下一颗树的),同时,在同一个叶子节点上的数的函数值是相同的,可以做合并,于是:

通过对求导等于0,可以得到

W_{j} 带入得目标函数的简化公式如下:

目标函数简化后,可以看到xgboost的目标函数是可以自定义的,计算时只是用到了它的一阶导和二阶导。得到简化公式后,下一步针对选择的特征计算其所带来的增益,从而选取合适的分裂特征。

提升树例子代码:

# !/usr/bin/env python # -*- coding: utf-8 -*- # 目标函数为真实值与预测值的差的平方和 import math # 数据集,只包含两列 test_list = [[1,5.56], [2,5.7], [3,5.81], [4,6.4], [5,6.8],\ [6,7.05], [7,7.9], [8,8.7], [9,9],[10,9.05]] step = 1 #eta # 起始拆分点 init = 1.5 # 最大拆分次数 max_times = 10 # 允许的最大误差 threshold = 1.0e-3 def train_loss(t_list): sum = 0 for fea in t_list: sum += fea[1] avg = sum * 1.0 /len(t_list) sum_pow = 0 for fea in t_list: sum_pow =math.pow((fea[1]-avg), 2) return sum_pow, avg def boosting(data_list): ret_dict = {} split_num = init while split_num <data_list[-1][0]: pos = 0 for idx, data inenumerate(data_list): if data[0]> split_num: pos = idx break if pos > 0: l_train_loss,l_avg = train_loss(data_list[:pos]) r_train_loss,r_avg = train_loss(data_list[pos:]) ret_dict[split_num] = [pos,l_train_loss+r_train_loss, l_avg, r_avg] split_num += step return ret_dict def main(): ret_list = [] data_list =sorted(test_list, key=lambda x:x[0]) time_num = 0 while True: time_num += 1 print 'beforesplit:',data_list ret_dict =boosting(data_list) t_list =sorted(ret_dict.items(), key=lambda x:x[1][1]) print 'splitnode:',t_list[0] ret_list.append([t_list[0][0], t_list[0][1][1]]) if ret_list[-1][1]< threshold or time_num > max_times: break for idx, data inenumerate(data_list): if idx <t_list[0][1][0]: data[1] -=t_list[0][1][2] else: data[1] -=t_list[0][1][3] print 'after split:',data_list print 'split node andloss:' print'\n'.join(["%s\t%s" %(str(data[0]), str(data[1])) for data inret_list]) if __name__ == '__main__': main()

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-03-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据科学与人工智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档