前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >NLP技术在搜索推荐场景中的应用

NLP技术在搜索推荐场景中的应用

作者头像
圆圆的算法笔记
发布2022-12-19 20:59:49
1.9K0
发布2022-12-19 20:59:49
举报
文章被收录于专栏:圆圆的算法笔记

NLP技术在搜索推荐中的应用非常广泛,例如在搜索广告的CTR预估模型中,NLP技术可以从语义角度提取一些对CTR预测有效的信息;在搜索场景中,也经常需要使用NLP技术确定展现的物料与搜索query的相关性,过滤掉相关性较差的物料,防止对用户体验造成负面影响。在推荐场景中,文本信息也可以作为一种泛化性较强的信息补充,弥补协同过滤信号的稀疏性问题,提升预测效果。

今天这篇文章梳理了NLP技术在搜索推荐场景中3个方面的应用,分别是NLP提升CTR预估效果、NLP解决搜索场景相关性问题、NLP信息优化基于推荐系统效果。

1

NLP特征提升CTR预估效果

Learning Supplementary NLP Features for CTR Prediction in Sponsored Search(KDD 2022)是微软必应团队在近年KDD上发表的一篇工作,主要介绍了如何利用NLP特征提升CTR预估的效果。这篇工作的应用场景是必应的搜索广告,需要对给定搜索词下不同的广告document进行CTR预测,并根据预测的CTR进行排序。

业内一般使用NLP特征的方法是,使用预训练的BERT模型,给当前query和document对进行相关性打分,将这个打分作为一维特征输入到CTR预估模型中。然而文中指出,这种应用NLP特征的方法并不是最优的。本文提出了一种BERT和CTR预估模型联合训练的方式,让BERT提取的语义特征和CTR预估任务更加契合。

基础的模型结构如下图,左侧是位置特征和CTR预估的其他特征(如user、context特征等),右侧是语义特征,使用预训练的BERT,以query和ad文本作为输入,得到query和ad匹配的向量。CTR预估的向量和BERT生成的向量相加后,作为最终表示进行CTR预测。

由于BERT模型的参数量很大,网络层数很深,而CTR预估模型的网络层数比较浅。这两个模型直接一起优化会比较困难。因此文中采用了两阶段的训练方法。在第一阶段,先分别独立的使用CTR预估的label训练不带语义特征的CTR预估模型,以及预训练的BERT模型,这一步得到了初始化参数。在第二阶段,将两个网络融合到一起学习,同时更新所有网络的参数。

由于BERT网络参数量大,计算比较慢,文中还采用了一种蒸馏的策略压缩BERT模型的体积。Teacher部分是原始的BERT+CTR模型,Student部分将BERT改为一个轻量级的语义模型,使用正则化约束轻量级语义模型和原始BERT输出的向量表示相接近,让Student网络蒸馏主模型的知识。

2

NLP解决搜索场景相关性问题

NLP在搜索场景或电商场景的一大应用,就是解决相关性问题。相关性和CTR预估问题存在比较大的差异,相关性是影响CTR的一个因素,CTR还受到user、展现创意质量等多种因素的影响。相比而言,相关性更加客观的衡量了搜索词和展现商品是否匹配。因此,业内一般会将相关性建模和CTR建模分开考虑,而NLP技术对于解决相关性问题至关重要。

BERT2DNN: BERT Distillation with Massive Unlabeled Data for Online E-Commerce Search(ICDM 2020)是京东和清华大学发表的一篇解决电商场景相关性问题的工作。下图对比了本文提出的方法和业内其他基础方法的差异。

解决相关性问题,数据来源有两个方面,一方面是根据用户的搜索和点击行为构造数据,例如query-item发生点击就认为是相关的。这种数据标注成本很低,数据量也很大,但是并不代表真正的相关性,存在一定的噪声。另一种类型的数据是人工标注的相关性数据,这类数据由于需要人工标注,比较精准,噪声小,但是标注成本较高,往往不会积累很多数据。A unified neural network approach to e-commerce relevance learning(2019)这篇解决相关性问题的文章中,使用了先在用户行为数据上预训练,再使用人工标注的高质量数据finetune的架构构建相关性模型。

本文提出的BERTDNN方法,优化点主要体现在对BERT的蒸馏以及模型训练流程上。模型主体结构采用BERT,输入query和item文本信息,预测打分结果。首先在干净的相关性语料数据以及人工标注的高质量数据上训练BERT模型,然后利用这个模型对搜索日志中的用户行为数据打分,得到大量的包含相关性打分的数据。接下来使用一个DNN模型拟合这个打分,将BERT中的知识蒸馏到DNN模型中。DNN模型的结构可以采用query和item的embedding在底层直接交叉的双单塔结构,或者分别交叉的双塔结构。DNN模型大大降低了运行开销,作为线上最终部署的模型。

3

NLP优化推荐系统效果

在推荐系统中,一般根据user对item的打分结果学习user和item的表示向量,然后利用向量检索进行推荐。然而,协同过滤信号存在稀疏性,容易影响模型效果。而user的填写的评价、item的描述等文本信息,在协同过滤信号的基础上提供了高泛化性特征,对于提升推荐效果很有帮助。

Gated Attentive-Autoencoder for Content-Aware Recommendation(WSDM 2019)就采用了item content表示与user-item打分关系的表示相融合的方式提升效果。文中利用user-item打分学习一个embedding,同时利用item的内容信息结合attention模块学习一个文本表示信息,然后使用一个门结构对两侧的信息进行融合。此外,本文还是用了item的邻居信息结合attention来丰富中心节点表示。

另一篇文章Aligning Dual Disentangled User Representations from Ratings and Textual Content(KDD 2022)也采用了类似的方法。本文为了刻画user与item之间发生交互行为的底层因素,采用了分解学习的方法,根据user-item的打分信息以及user的评论信息分别学习两个表示,然后在分解学习得到多个因素后,在因素这个维度进行两个表示的对齐。

4

总结

本文主要介绍了NLP技术在搜索推荐场景中的应用。在搜索推荐中,文本信息是很常见的一种信息来源,因此如何利用文本信息提升CTR预估、推荐等模型效果,以及如何利用NLP技术解决相关性问题,都是搜推广场景中很有价值的研究点。

END

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-10-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 圆圆的算法笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档