前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Kafka 生产与消费

Kafka 生产与消费

原创
作者头像
大鹅
发布2019-09-17 10:32:58
1.1K0
发布2019-09-17 10:32:58
举报
文章被收录于专栏:大鹅专栏:大数据到机器学习

@toc

1. 概述

接着上一篇博客,本篇主要介绍Kafka的生产与消费的过程。Producers往Brokers里面的指定Topic中写消息,Consumers从Brokers里面拉去指定Topic的消息。

图中有两个topic,topic 0有两个partition,topic 1有一个partition,三副本备份。

2. 生产

创建一条记录,记录中一个要指定对应的topicvaluekeypartition可选。 先序列化,然后按照topic和partition,放进对应的发送队列中。kafka produce都是批量请求,会积攒一批,然后一起发送,不是调send()就进行立刻进行网络发包。

如果partition没填,那么情况会是这样的:

  • key有填 按照key进行哈希,相同key去一个partition。(如果扩展了partition的数量那么就不能保证了)
  • key没填 round-robin来选partition

这些要发往同一个partition的请求按照配置,攒一批然后由一个单独的线程一次性发过去。

2.1 partition分配与Leader选举

当存在多副本的情况下,会尽量把多个副本,分配到不同的broker上。kafka会为partition选出一个leader,之后所有该partition的请求,实际操作的都是leader,然后再同步到其他的follower。当一个broker歇菜后,所有leader在该broker上的partition都会重新选举,选出一个leader。(这里不像分布式文件存储系统那样会自动进行复制保持副本数)

然后这里就涉及两个细节:怎么分配partition,怎么选leader。

关于partition的分配,还有leader的选举,总得有个执行者。在kafka中,这个执行者就叫controller。kafka使用zk在broker中选出一个controller,用于partition分配和leader选举。

2.1.1 partition分配
  1. 将所有Broker(假设共n个Broker)和待分配的Partition排序
  2. 将第i个Partition分配到第(i mod n)个Broker上 (这个就是leader)
  3. 将第i个Partition的第j个Replica分配到第((i + j) mode n)个Broker上
2.1.2 Leader选举

controller会在Zookeeper的/brokers/ids节点上注册Watch,一旦有broker宕机,它就能知道。当broker宕机后,controller就会给受到影响的partition选出新leader。controller从zk 的/brokers/topics/[topic]/partitions/[partition]/state中,读取对应partition的ISR(in-sync replica已同步的副本)列表,选一个出来做leader。

选出leader后,更新zk,然后发送LeaderAndISRRequest给受影响的broker。这里不是使用zk通知,而是直接给broker发送rpc请求。

如果ISR列表是空,那么会根据配置,随便选一个replica做leader,或者干脆这个partition就是歇菜。如果ISR列表的有机器,但是也歇菜了,那么还可以等ISR的机器活过来。

2.2 多副本同步

这里的策略,服务端这边的处理是follower从leader批量拉取数据来同步。但是具体的可靠性,是由生产者来决定的。

生产者生产消息的时候,通过request.required.acks参数来设置数据的可靠性。

acks

what happen

0

which means that the producer never waits for an acknowledgement from the broker.发过去就完事了,不关心broker是否处理成功,可能丢数据。

1

which means that the producer gets an acknowledgement after the leader replica has received the data. 当写Leader成功后就返回,其他的replica都是通过fetcher去同步的,所以kafka是异步写,主备切换可能丢数据。

-1

which means that the producer gets an acknowledgement after all in-sync replicas have received the data. 要等到isr里所有机器同步成功,才能返回成功,延时取决于最慢的机器。强一致,不会丢数据。

在acks=-1的时候,如果ISR少于min.insync.replicas指定的数目,那么就会返回不可用。

这里ISR列表中的机器是会变化的,根据配置 replica.lag.time.max.ms,多久没同步,就会从ISR列表中剔除。以前还有根据落后多少条消息就踢出ISR,在1.0版本后就去掉了,因为这个值很难取,在高峰的时候很容易出现节点不断的进出ISR列表。

从ISA中选出leader后,follower会从把自己日志中上一个高水位后面的记录去掉,然后去和leader拿新的数据。因为新的leader选出来后,follower上面的数据,可能比新leader多,所以要截取。这里高水位的意思,对于partition和leader,就是所有ISR中都有的最新一条记录。消费者最多只能读到高水位;

从leader的角度来说高水位的更新会延迟一轮,例如写入了一条新消息,ISR中的broker都fetch到了,但是ISR中的broker只有在下一轮的fetch中才能告诉leader。

也正是由于这个高水位延迟一轮,在一些情况下,kafka会出现丢数据和主备数据不一致的情况,0.11开始,使用leader epoch来代替高水位。

3. 消费

订阅topic是以一个消费组来订阅的,一个消费组里面可以有多个消费者。同一个消费组中的两个消费者,不会同时消费一个partition。换句话来说,就是一个partition,只能被消费组里的一个消费者消费,但是可以同时被多个消费组消费。因此,如果消费组内的消费者如果比partition多的话,那么就会有个别消费者一直空闲。

3.1 offset保存

一个消费组消费partition,需要保存offset记录消费到哪,以前保存在zk中,由于zk的写性能不好,以前的解决方法都是consumer每隔一分钟上报一次。这里zk的性能严重影响了消费的速度,而且很容易出现重复消费。

0.10版本后,kafka把这个offset的保存,从zk总剥离,保存在一个名叫__consumeroffsets topic的topic中。写进消息的key由groupid、topic、partition组成,value是偏移量offset。topic配置的清理策略是compact。总是保留最新的key,其余删掉。一般情况下,每个key的offset都是缓存在内存中,查询的时候不用遍历partition,如果没有缓存,第一次就会遍历partition建立缓存,然后查询返回。

确定consumer group位移信息写入__consumers_offsets的哪个partition,具体计算公式:

代码语言:txt
复制
__consumers_offsets partition =
	           Math.abs(groupId.hashCode() % groupMetadataTopicPartitionCount)   
	//groupMetadataTopicPartitionCount由offsets.topic.num.partitions指定,默认是50个分区。
3.2 分配partition--reblance

生产过程中broker要分配partition,消费过程这里,也要分配partition给消费者。类似broker中选了一个controller出来,消费也要从broker中选一个coordinator,用于分配partition。

下面从顶向下,分别阐述一下

  1. 怎么选coordinator
  2. 交互流程
  3. reblance的流程
3.2.1 选coordinator
  1. 看offset保存在那个partition
  2. 该partition leader所在的broker就是被选定的coordinator

这里我们可以看到,consumer group的coordinator,和保存consumer group offset的partition leader是同一台机器。

3.2.2 交互流程

把coordinator选出来之后,就是要分配了

整个流程是这样的:

  1. consumer启动、或者coordinator宕机了,consumer会任意请求一个broker,发送ConsumerMetadataRequest请求,broker会按照上面说的方法,选出这个consumer对应coordinator的地址。
  2. consumer 发送heartbeat请求给coordinator,返回IllegalGeneration的话,就说明consumer的信息是旧的了,需要重新加入进来,进行reblance。返回成功,那么consumer就从上次分配的partition中继续执行。
3.2.3 reblance流程
  1. consumer给coordinator发送JoinGroupRequest请求。
  2. 这时其他consumer发heartbeat请求过来时,coordinator会告诉他们,要reblance了。
  3. 其他consumer发送JoinGroupRequest请求。
  4. 所有记录在册的consumer都发了JoinGroupRequest请求之后,coordinator就会在这里consumer中随便选一个leader。然后回JoinGroupRespone,这会告诉consumer你是follower还是leader,对于leader,还会把follower的信息带给它,让它根据这些信息去分配partition
  5. consumer向coordinator发送SyncGroupRequest,其中leader的SyncGroupRequest会包含分配的情况。
  6. coordinator回包,把分配的情况告诉consumer,包括leader。 当partition或者消费者的数量发生变化时,都得进行reblance。

列举一下会reblance的情况:

  1. 增加partition
  2. 增加消费者
  3. 消费者主动关闭
  4. 消费者宕机
  5. coordinator自己也宕机

4. 消息投递语义

kafka支持3种消息投递语义

  • At most once:最多一次,消息可能会丢失,但不会重复
  • At least once:最少一次,消息不会丢失,可能会重复
  • Exactly once:只且一次,消息不丢失不重复,只且消费一次(0.11中实现,仅限于下游也是kafka)

在业务中,常常都是使用At least once的模型,如果需要可重入的话,往往是业务自己实现。

4.1 At least once

先获取数据,再进行业务处理,业务处理成功后commit offset。

  1. 生产者生产消息异常,消息是否成功写入不确定,重做,可能写入重复的消息
  2. 消费者处理消息,业务处理成功后,更新offset失败,消费者重启的话,会重复消费
4.2 At most once

先获取数据,再commit offset,最后进行业务处理。

  1. 生产者生产消息异常,不管,生产下一个消息,消息就丢了
  2. 消费者处理消息,先更新offset,再做业务处理,做业务处理失败,消费者重启,消息就丢了
4.3 Exactly once

思路是这样的,首先要保证消息不丢,再去保证不重复。所以盯着At least once的原因来搞。 首先想出来的:

生产者重做导致重复写入消息----生产保证幂等性

消费者重复消费---消灭重复消费,或者业务接口保证幂等性重复消费也没问题

由于业务接口是否幂等,不是kafka能保证的,所以kafka这里提供的exactly once是有限制的,消费者的下游也必须是kafka。所以一下讨论的,没特殊说明,消费者的下游系统都是kafka(注:使用kafka conector,它对部分系统做了适配,实现了exactly once)。

生产者幂等性好做,没啥问题。

解决重复消费有两个方法:

  1. 下游系统保证幂等性,重复消费也不会导致多条记录。
  2. 把commit offset和业务处理绑定成一个事务。

本来exactly once实现第1点就ok了。

但是在一些使用场景下,我们的数据源可能是多个topic,处理后输出到多个topic,这时我们会希望输出时要么全部成功,要么全部失败。这就需要实现事务性。既然要做事务,那么干脆把重复消费的问题从根源上解决,把commit offset和输出到其他topic绑定成一个事务。

Ref

  1. https://www.jianshu.com/p/d3e963ff8b70

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 概述
  • 2. 生产
    • 2.1 partition分配与Leader选举
      • 2.1.1 partition分配
      • 2.1.2 Leader选举
    • 2.2 多副本同步
    • 3. 消费
      • 3.1 offset保存
        • 3.2 分配partition--reblance
          • 3.2.1 选coordinator
            • 3.2.2 交互流程
              • 3.2.3 reblance流程
              • 4. 消息投递语义
                • 4.1 At least once
                  • 4.2 At most once
                    • 4.3 Exactly once
                    • Ref
                    相关产品与服务
                    消息队列 CKafka 版
                    消息队列 CKafka 版(TDMQ for CKafka)是一个分布式、高吞吐量、高可扩展性的消息系统,100%兼容开源 Kafka API 2.4、2.8、3.2 版本。CKafka 基于发布/订阅模式,通过消息解耦,使生产者和消费者异步交互,无需彼此等待。CKafka 具有高可用、数据压缩、同时支持离线和实时数据处理等优点,适用于日志压缩收集、监控数据聚合、流式数据集成等场景。
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档