前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LWC 59:730. Count Different Palindromic Subsequences

LWC 59:730. Count Different Palindromic Subsequences

作者头像
用户1147447
发布2018-01-02 10:04:08
4780
发布2018-01-02 10:04:08
举报
文章被收录于专栏:机器学习入门

LWC 59:730. Count Different Palindromic Subsequences

传送门:730. Count Different Palindromic Subsequences

Problem:

Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7. A subsequence of a string S is obtained by deleting 0 or more characters from S. A sequence is palindromic if it is equal to the sequence reversed. Two sequences A_1, A_2, … and B_1, B_2, … are different if there is some i for which A_i != B_i.

Example 1:

Input: S = ‘bccb’ Output: 6 Explanation: The 6 different non-empty palindromic subsequences are ‘b’, ‘c’, ‘bb’, ‘cc’, ‘bcb’, ‘bccb’. Note that ‘bcb’ is counted only once, even though it occurs twice.

Example 2:

Input: S = ‘abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba’ Output: 104860361 Explanation: There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.

Note:

The length of S will be in the range [1, 1000].

Each character S[i] will be in the set {‘a’, ‘b’, ‘c’, ‘d’}.

思路: 难点在于如何划分子问题,才能保证更新dp时没有重复,其中需要解决重复元素子串的表达。为了保证每个子问题的回文在原问题中没有出现过,定义如下规则:子问题求出的回文串必须套上一层外壳,即子问题中的回文串集合Set = {s | s 为回文}, 有新的回文 s’ = “a” + s + “a” or “b” + s + “b”,….

定义函数如下f(i, j) 表示当前对应S[i,…j]的不重复回文串个数,于是有:

代码语言:javascript
复制
初始化: ans = 0
1. 子问题的回文串批层外衣,有 ans += f(i + 1, j - 1) , 其中S[i] == S[j]
2. 考虑"a_..._a", "_..._"表示子问题的回文串,抽出a'= a...a,其中"..."表示x个a,那么有新的回文串aa...a 和 aa...aa,有ans += 2

代码如下:

代码语言:javascript
复制
    public int countPalindromicSubsequences(String S) {
        int n = S.length();
        int[][] next = new int[4][1010];
        int[][] prev = new int[4][1010];

        char[] cs = S.toCharArray();

        for (int i = 0; i < 4; ++i) Arrays.fill(next[i], n);
        for (int i = n - 1; i >= 0; --i) {
            int c = cs[i] - 'a';
            for (int j = 0; j < 4; ++j) next[j][i] = i + 1 == n ? n : next[j][i + 1];
            next[c][i] = i;
        }

        for (int i = 0; i < 4; ++i) Arrays.fill(prev[i], -1);
        for (int i = 0; i < n; ++i) {
            int c = cs[i] - 'a';
            for (int j = 0; j < 4; ++j) prev[j][i] = i - 1 == -1 ? -1 : prev[j][i - 1];
            prev[c][i] = i;
        }
        dp = new int[1010][1010];
        return f(cs, next, prev, 0, n - 1);
    }

    int mod = 1000000000 + 7;
    int[][] dp;

    int f(char[] cs, int[][] next, int[][] prev, int s, int e) {
        if (s > e) return 0;
        if (dp[s][e] > 0) return dp[s][e];
        long ans = 0;
        for (int i = 0; i < 4; ++i) {
            int ns = next[i][s];
            int ne = prev[i][e];
            if (ns > ne) continue;
            if (ns != ne) ans += 1;
            ans ++;
            ans += f(cs, next, prev, ns + 1, ne - 1);
        }
        dp[s][e] = (int)(ans % mod);
        return dp[s][e];
    }    
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-11-19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • LWC 59:730. Count Different Palindromic Subsequences
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档