我的目标是使用CNN浏览一张图片,然后在密集的图层之前添加一组额外的数据。
picIn = keras.Input(shape=x[0].shape)
conv1 = layers.Conv2D(32,kernel_size=3,padding='same',use_bias=False)(picIn)
batch1 = layers.BatchNormalization()(conv1)
leaky1 = layers.LeakyReLU(alpha=.3)(batch1)
conv2 = layers.Conv2D(32,kernel_size=3,padding='same',use_bias=False)(leaky1)
batch2 = layers.BatchNormalization()(conv2)
leaky2 = layers.LeakyReLU(alpha=.3)(batch2)
cdrop1 = layers.Dropout(.20)(leaky2)
conv3= layers.Conv2D(64,kernel_size=3,padding='same',use_bias=False)(cdrop1)
batch3 = layers.BatchNormalization()(conv3)
leaky3 = layers.LeakyReLU(alpha=.3)(batch3)
conv4 = layers.Conv2D(64,kernel_size=3,padding='same',use_bias=False)(leaky3)
batch4 = layers.BatchNormalization()(conv4)
leaky4 = layers.LeakyReLU(alpha=.3)(batch4)
cdrop2 = layers.Dropout(.20)(leaky4)
flat1 = layers.Flatten()(cdrop2)
rtheta1 = rtheta[trainCut]
rtheta1 = rtheta1.reshape(467526,1)
rtheta2 = rtheta[testCut]
rtheta2 = rtheta2.reshape(82247,1)
ip2 = keras.Input(shape=rtheta1.shape)
flat2 = layers.Flatten()(ip2)
merge = layers.Concatenate()([flat1,flat2])
hidden1 = layers.Dense(512,use_bias=False)(merge)
batch5 = layers.BatchNormalization()(hidden1)
leaky5 = layers.LeakyReLU(alpha=.3)(batch5)
ddrop1 = layers.Dropout(.20)(leaky5)
hidden2 = layers.Dense(512,use_bias=False)(ddrop1)
batch6 = layers.BatchNormalization()(hidden2)
leaky6 = layers.LeakyReLU(alpha=.3)(batch6)
ddrop2 = layers.Dropout(.20)(leaky6)
hidden3 = layers.Dense(512,use_bias=False)(merge)
batch7 = layers.BatchNormalization()(hidden1)
leaky7 = layers.LeakyReLU(alpha=.3)(batch5)
ddrop3 = layers.Dropout(.20)(leaky5)
output = layers.Dense(1)(ddrop3)
model = keras.Model(inputs = [picIn,ip2], outputs = output)
H = model.fit(x =[ x[trainCut],rtheta[trainCut]],y= y[trainCut],batch_size=args.bsize,validation_data=([x[testCut],rtheta[testCut]], y[testCut]),epochs=args.epochs)
我总是得到一个与输入的形状有关的错误。
层稠密的输入0与层不兼容:输入形状的期望轴-1为值473926,但接收到的输入为无形,6401。
模型是用形状(None,467526,1)构造的,用于输入张量(“input_2:0”,shape=(None,467526,1),dtype=float32),但是对形状不兼容的输入(None,1,1)调用它。
我搞不懂这里到底该做什么。X列切割是一个大小为(467526,10,10,2)的矩阵,rtheta1是(467526,1),ytraincut也是
验证数据是相同的,只是它是82247而不是467526。
在ip2之后,我尝试过它而没有被压扁,我得到了一个不同的错误,但是我认为核心问题仍然是一样的。
任何帮助都将不胜感激。谢谢!
编辑:数据显然不是正确的形状,但我想出了如何修复它。
发布于 2020-07-11 08:21:49
在将训练数据输入第一个张量之前,您是否确保所有训练数据的形状都是一致的?
https://stackoverflow.com/questions/62780751
复制相似问题