Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >大厂都在用!Protobuf原理解析与优化技巧

大厂都在用!Protobuf原理解析与优化技巧

作者头像
腾讯云开发者
发布于 2025-04-18 04:52:51
发布于 2025-04-18 04:52:51
21300
代码可运行
举报
运行总次数:0
代码可运行

本文将在proto3语法背景下,介绍protobuf的编码原理,并结合业务场景探讨部分优化技巧。(注:如果文中有任何错误欢迎评论指正。)

关注腾讯云开发者,一手技术干货提前解锁👇

鹅厂程序员面对面新一季直播继续,每周将邀请鹅厂明星技术大咖深入讲解技术话题,更有精美周边等你来拿,记得提前预约直播~👇

本周五下午!深度了解20+腾讯云最新黑科技;5小时直播,百份周边送不停。

01、Protobuf编码原理介绍

序列化算法被广泛应用于各种通信协议中,本文对序列化算法进行狭义定义:

将某个struct或class的内存数据和通信数据链路上的字节流进行互相转化的算法。

基于这个定义序列化算法具有两个行为:

  1. 序列化:内存数据->通信链路字节流。
  2. 反序列化:通信链路字节流->内存数据。

常用的序列化算法有:json、xml、protobuf 等,将这些算法进行归纳不难发现这些算法主要是对三种基本类型(原子性、不可被拆分)和三种复合类型(由基本类型和其他符合类型构成)进行序列化和反序列化。

  1. 基本类型:定点数值类型、浮点数值类型、字符串类型
  2. 复合类型:结构体类型、数组类型、map类型

protobuf也是基于这些类型工作的,下文将在proto3语法的背景下介绍算法对不同类型的编码原理。

1.1 基本类型

1.1.1 定点数值类型

proto3语法中:int32、int64、uint32、uint64、sint32、sint64、fixed32、fixed64、sfixed32、sfixed64、bool、enum属于定点数值类型。 对于int32、int64、uint32、uint64会直接使用varint编码,bool类型会直接使用一个字节存储,enum可以看成是一个int32类型。对于sint32、sint64类型会先进行zigzag编码,再进行varint编码,对于fixed32、fixed64、sfixed32、sfixed64类型会使用定长的四个或八个字节进行存储。

关于varint编码和zigzag编码的细节可以参考文档https://protobuf.dev/programming-guides/encoding/ 。本文直接给出两种编码的性质:

varint编码:变长编码,对于小正整数有较好的压缩效果,对于大整数或负数编码后字节流长度会变大。

zigzag编码:定长编码,将小正整数和小负整数转换到小正整数,结合varint编码,可以实现对绝对值较小的整数有良好的压缩效果。

1.1.2 浮点数值类型

proto3语法中:float和double属于浮点数据类型,使用定长的四个字节或八个字节存储,数据直接用IEEE754标准表示。

1.1.3 字符串类型

proto3语法中:string、bytes属于字符串类型,字符串类型序列化后的字节流为其原始内容本身。这两种类型的不同之处在于string内的字节流必须是utf8编码,bytes没有这种要求。

1.2 复合类型

1.2.1 结构体类型

proto3语法中使用message定义结构体类型,结构体类型有多个不同tagid构成的字段,字段可以是基本类型或复合类型,甚至可以是这个结构体类型本身。结构体每个字段底层都使用这种格式进行存储,需要注意的是typeid、length、data三部分长度会根据实际情况发生改变。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
typeid    length   data
+--------+--------+--------+
|xxxxxxxx|xxxxxxxx|xxxxxxxx|
+--------+--------+--------+

typeid用于存储结构体字段编号(tagNum)和字段类型(tagType),tagNum为字段“=”后的数字,tagNum也使用varint进行编码,因此如果“=”后的数字很大,则可能导致tagNum编码变大,tagid占用多个字节。而tagType则指明数据类型,这部分固定占用三个bit。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
|tagNum        |tagType|
+----------------------+
|x  x  x  x  x  x  x  x|
+----------------------+
 7              2     0 

下表记录了不同字段类型对应的tagType值:

tagType

类型

0

int32、int64、uint32、uint64、sint32、sint64、bool、enum

1

fixed64、sfixed64、double

2

string、bytes、结构体类型、数组类型、map类型

3

弃用

4

弃用

5

fixed32、sfixed32、float

length部分表示data部分的长度,同样使用变长varint编码,需要注意的是如果字段类型是定点数值类型或浮点数值类型,则length部分不会出序列化后的字节流中。

data部分为原始数据,可以是基本类型和复合类型序列化后的字节流,算法通常递归的对这些字段进行处理。

1.2.2 数组类型

proto3语法中使用repeated为前缀的字段即为数组类型,也就是说repeated关键字是用来修饰结构体类型的字段的。

如果repeated修饰的是定点数值类型或浮点数值类型,在proto3语法下会默认按照下图方式将这些数值排列在一起,length部分记录data1~dataN所有数值的字节数之和。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
typeid    length   data1    data2       dataN
+--------+--------+--------+--------+~~+--------+
|xxxxxxxx|xxxxxxxx|xxxxxxxx|xxxxxxxx|  |xxxxxxxx|
+--------+--------+--------+--------+~~+--------+

如果修饰的是其他类型则会按照以下方式组织这些数据(其中field1为数组类型),需要注意的是属于同一个数组的不同元素中间可能有其他字段的元素插入。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
typeid1   length1  data1     typeid2  length2  data2     typeid1  length3  data3    
+--------+--------+--------++--------+--------+--------++--------+--------+--------+
|xxxxxxxx|xxxxxxxx|xxxxxxxx||xxxxxxxx|xxxxxxxx|xxxxxxxx||xxxxxxxx|xxxxxxxx|xxxxxxxx|
+--------+--------+--------++--------+--------+--------++--------+--------+--------+
|			field1		   ||			field2		   ||			field1		   |

1.2.3 map类型

proto3语法中map也是一种修饰符,修饰结构体类型的字段。map类型的key必须为定点数值类型或string类型,map的底层存储key-value键值对,采用和数组类型一样的存储方法,数组中每个元素是kv键值对。以下数据定义中,message A和message B有完全相同的底层存储结构。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
message A{
	map<int32,float> mp = 1;
}
message KV{
	int32 K = 1;
	float V = 2;
}
message B{
	repeated KV mp = 1;
}

1.3 类型默认值

如果类型为默认值,则该字段tagid+length+data不会出现在序列化后的字节流中。

类型

默认值

int32、int64、uint32、uint64、fixed32、fixed64、sfixed32、sfixed64、float、double

0

enum

0对应的枚举值

bool

FALSE

string

""

bytes

空字节流

结构体类型

null (对应字段的指针为空)

数组类型

空数组

map类型

空map

需要注意的是如果某个字段是结构体类型,该字段对应的结构体中的所有元素均为默认值,这种情况下该字段的data部分会被省略,只保留tagid和length部分,当然length部分值为0。如果字段的指针为空,则该字段不会有任何内容出现在序列化后的字节流中。

1.4 举例

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
enum C {
  C1 = 0;
  C2 = 1;
}
message B {
  int32 X = 1;
  sint32 Y = 2;
  C Z = 3;
}
message A {
  repeated float F1 = 1;
  map<string, B> F2 = 20;
}
message A 内存中的数值:
F1:1.2  F1:2.3  F2:{key:"123"  value:{X:1  Y:-1  Z:C2}}
message A 序列化后的字节流:
0XA,0X8,0X9A,0X99,0X99,0X3F,0X33,0X33,0X13,0X40,0XA2,0X1,0XD,0XA,0X3,0X31,0X32,0X33,0X12,0X6,0X8,0X1,0X10,0X1,0X18,0X1
|---------------------A.F1---------------------|-------------------------------A.F2----------------------------------|
       |-------1.2---------|---------2.3------|A.F2.tagid|+----------|----"123"----|-------------|1|------|-1|----|C2|

需要注意的是message A 的 F2字段的tagNum是20,而tagType值是2,按照上文讨论的编码原理A.F2.tagid编码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
+----------------------+ +----------------------+
|0  0  0  0  0  0  0  1| |1  0  1  0  0  0  1  0|
+----------------------+ +----------------------+
 15                                      2     0 
|typeNum                                |tagType|
|varint编码,编码前:00010100,值为20     |值为2  |

从这个例子还可以看出,protobuf序列化之后低地址字节在前,高地址字节在后。

1.5 QA~

Q: protobuf既然有了int32 为什么还要用sint32 和 fixed32 ?

A: int32使用varint编码,对于小正数有较好的压缩效果,对于大整数和负数会导致额外的字节开销。因此引入fixed32,该类型不会对数值进行任何编码,对大于228-1的整数比int32占用更少的字节。而对于负数使用zigzag编码,这样绝对值较小的负数都能被有效压缩。

Q: 为什么数组类型每个元素都要用tagid+length+data这种格式进行存储?

A: 其实我也觉得这点设计不太合理,为什么不设计成tagid+元素个数+{length+data}...这种格式呢?

Q: map类型是不是尽量别用?

A: 如果你的业务对序列化后的字节流长度有要求,能不用就别用吧。

Q: 为什么数组类型和map类型的元素中间可能插入其他字节流?

A: 不清楚,不过这倒是解释了第二个问题。

Q: 既然通信双方都使用.proto文件约定了字段的类型,为什么tagid字段还要包含type信息?

A: 不清楚,不过可能和不同版本协议的兼容性有关。

02、优化技巧探讨

通过分析protobuf的编码原理,可以发现如果对序列化后的字节流长度有要求,无脑地定义数据结构是很不理智的,本节将讨论部分优化技巧。

2.1 类型优化

上文中多次提到过varint编码和zigzag编码,不同的数据类型使用不同的编码方法,那应该如何选择呢?首先给出正整数经过varint编码后占用字节数的算式,其中x表示待计算的正整数,y表示占用字节数。

y=⌈log2(x+1)/7⌉

对于zigzag编码需要明确一点:zigzag编码需要和varint编码一起使用。zigzag编码可以看作将正负交替的数值序列映射至正整数序列,之后再由varint对正整数进行编码。

**原始数值: **0,-1,1,-2,2,-3,3,-4,4...

**映射数值: **0,1,2,3,4,5,6,7,8...

现在考虑使用varint编码后4字节能表示的最大无符号整数,根据算式:令y=4,易得x最大值为228-1。因此可以得到结论,对于小于228-1的无符号整数推荐使用varint编码,对于大于228-1的无符号整数使用varint编码会导致编码后字节数变长。

然后讨论使用zigzag+varint编码后4字节能表示的正负数范围,结合以上分析不难得出4字节能表示的正负数范围是[-214 , 214-1]。 因此对于在此范围内的数值,经过zigzag+varint编号后的字节流长度小于四个字节。

基于以上分析下表给出不同数值范围的定点数值推荐类型(以下推荐类型都是基于最小字节流长度为目标,编解码过程会存在一定cpu消耗)

数据范围

推荐类型

[-263,-231)

sfixed64

[-231,-228)

sfixed32

[-228,-214)

sint64

[-214,214-1]

sint32

(214-1,228-1]

uint32或int32

(228-1,232-1]

fixed32

(232-1,256-1]

uint64或int64

(256-1,264-1]

fixed64

2.2 结构优化

从对protobuf编码原理的介绍那部分可以看出,protobuf因为考虑兼容性原因,存储了很多tagid、length这些记录结构信息的字段。在实际应用场景中如果数据的结构较为紧密(这个词暂时还无较为精确的定义),多个字段都有相同的结构是否能去掉记录结构信息的字段,只保留内容信息的字段,从而减少数据长度呢?本文提供一种优化思路。

优化前:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
message A{
	int32 x = 1;
	int32 y = 2;
}
message B{
	int32 z = 1;
}
message C{
	repeated A as = 1;
	B b = 2 ;
}
message C 序列化后字节流:
0XA,0X4,0X8,0X1,0X10,0X2,0XA,0X4,0X8,0X1,0X10,0X2,0XA,0X4,0X8,0X1,0X10,0X2,0X12,0X2,0X8,0X3
message C 内存中数值:
as:{x:1 y:2} as:{x:1 y:2} as:{x:1 y:2} b:{z:3}

优化后:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
message C{
	repeated int32 xs = 1;
	repeated int32 ys = 2;
	int32 z = 3;
}
message C 序列化后字节流:
0XA,0X3,0X1,0X1,0X1,0X12,0X3,0X2,0X2,0X2,0X18,0X3
message C 内存中数值:
xs:1  xs:1  xs:1  ys:2  ys:2  ys:2  z:3

前后对比可看在传输相同的信息情况下字节流长度减半,这主要因为舍弃了很多tagID字段。当然这种优化思路是基于数据的结构较为紧密这一假设:优化前大部分message A中的X、Y字段均非默认值,这样就可以省略大量结构信息,从而减少字节流长度。实际应用中可以大量应用这种技巧,来优化编解码性能。

2.3 数据优化

除了结构信息是否有其他信息可以被省略掉呢?当然,除了结构信息还有数据信息,即为data字段记录的值。根据信息论的基本观点,如果一组数据分布范围很广,每个数据点现频率几乎相同则需要用较多bit对这组数据进行编码。如果这组数据分布较为单一,某些数据点出现频率较高,这种数据分布能较好地使用变长编码表示。

推广到实际业务场景中,如果发现某组数据的某些字段满足某些分布特征,比如:时间戳、交易ID,这种分布范围较小,重复性较高的数据,最简单的方法是:使用一个int64存储这组数据的最小值,然后对于这组数据中的其他元素分别计算和这个最小值的差值。因为数据分布范围较小,因此差值也不会很大,从而减少整体编码长度。

优化前:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
message A { repeated int64 timestamps = 1; }
message A 序列化后字节流:
0XA,0X1E,0XCA,0XDE,0XA5,0XAF,0XAD,0X31,0XCE,0XDE,0XA5,0XAF,0XAD,0X31,0XD2,0XDE,0XA5,0XAF,0XAD,0X31,0XD6,0XDE,0XA5,0XAF,0XAD,0X31,0XDA,0XDE,0XA5,0XAF,0XAD,0X31,
message A 内存中数值:
timestamps:1695805960010  timestamps:1695805960014  timestamps:1695805960018  timestamps:1695805960022  timestamps:1695805960026

优化后:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
message A {
  int64 base = 1;
  repeated int64 timestamps = 2;
}
message A 序列化后字节流:
0X8,0XCA,0XDE,0XA5,0XAF,0XAD,0X31,0X12,0X5,0X0,0X4,0X8,0XC,0X10,
message A 内存中数值:
base:1695805960010 timestamps:0 timestamps:4 timestamps:8 timestamps:12 timestamps:16

由于差值通常较小,在此基础上可以继续进行bit优化,比如最大差值是15则最多用4个bit表示一个差值即可,这样一个字节就可以记录两个差值的信息,从而进一步压缩序列化字节流。

03、未来工作展望

基于上述分析和实践,不难发现protobuf进行序列化的过程中,需要储存结构信息数据信息。对于结构紧密的数据,protobuf会导致大量bit用于表征结构信息。而如果数据信息中存在某些先验数据分布或规律,protobuf也会存储较多冗余信息。那么是否有算法能较好地结合待序列化数据的特性,进而防止信息冗余呢?这个可能需要进一步的研究...

-End-

原创作者|余李扬

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-04-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯云开发者 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
大厂神器?Protobuf编码原理和避坑指南!
Protobuf 是 Google 出品的序列化框架,可跨平台、跨语言使用,扩展性良好。与 XML, JSON 等序列化框架相同,Protobuf 广泛的应用于数据存储,网络传输,RPC 调用等环境。我们现在所有的协议、配置、数据库的表达都是以 Protobuf 来进行承载的,所以我想深入总结一下 Protobuf 这个协议,以免踩坑。欢迎继续阅读。
腾讯云开发者
2025/05/23
1120
大厂神器?Protobuf编码原理和避坑指南!
通过一个完整例子彻底学会protobuf序列化原理
Protobuf是我们在网络传输中经常会用到的协议,优点是版本间兼容性强,对数据序列化时的极致压缩使得Protobuf包体积比xml、json等格式要小很多,节约流量。对于pb协议的具体使用方法,其官网有比较详细的说明,本文不再详述。我们的数据不管在代码中是什么复杂结构体,传输时都要序列化成二进制串。官网中也介绍了Protobuf的序列化算法,不过给的例子比较简单,学习起来不够直观。因此,本文用一个较为完整的例子直观展示一下Protobuf的序列化,一个例子即可搞懂Protobuf的序列化算法。
horstxu
2019/10/14
20.2K1
通过一个完整例子彻底学会protobuf序列化原理
嵌入式linux之go语言开发(七)protobuf的使用
之前写过一篇博文:《如果终端采用protobuf与采集前置通信,能带来哪些变革?https://blog.csdn.net/yyz_1987/article/details/81147454》,介绍了使用protobuf作为序列化通信格式的诸多好处。
杨永贞
2020/08/04
1.2K0
深入protobuf(Protocol Buffers)原理:简化你的数据序列化
Protocol buffers 是⼀种语⾔中⽴,平台⽆关,可扩展的序列化数据的格式,可⽤于通信协议,数据存储 等。Protocol buffers 在序列化数据具有灵活、⾼效的特点。
Lion 莱恩呀
2024/11/04
5.9K0
深入protobuf(Protocol Buffers)原理:简化你的数据序列化
protobuf编码原理
小编遇到一个json序列化非常消耗CPU性能的问题。情况大概是这样的,接口查询的是某对象的属性,该对象的属性有上千个,采用的是JSON存储的,在用Go反序列化到内存结构体的时候,非常消耗CPU。也就是说采用JSON编解码有大量字段对象的场景,往往会出现性能瓶颈。而与之对应的protobuf在编解码时性能要优于json,下面主要对protobuf编码原理做个分析,弄懂protobuf编码效率很高的原因。
数据小冰
2022/08/15
1.4K0
protobuf编码原理
protobuffer的前世今生(二)——编码
在一个应用中,你创建一个Test1message 并且设置 a为150.你可以序列化这个消息到输出流,你可以得到3个字节 08 96 01 到此为止,如此之小,如此数字化——但是这意味着什么呢?请继续读下去…
MickyInvQ
2020/09/27
6150
protobuffer的前世今生(二)——编码
【protobuf源码探秘】编码、序列化
早就想写了,不过前面有redis源码学习的系列在,就一直拖着。 在我学protobuf的时候,在网上看到一个博客,说的挺好,但是偏偏插了这么一句:fixed 和 int 相比,fixed重时间、int重空间。所以如果对空间性能有要求的话就使用int… 吧啦吧啦的。
看、未来
2022/01/10
7940
【protobuf源码探秘】编码、序列化
protobuffer 编解码原理
serena
2017/09/05
2.5K0
protobuffer 编解码原理
Protocol Buffer 序列化原理大揭秘 - 为什么Protocol Buffer性能这么好?
通过将 结构化的数据 进行 串行化(序列化),从而实现 数据存储 / RPC 数据交换的功能
Carson.Ho
2019/02/22
7.9K3
protocol buffer的高效编码方式
protocol buffer这种优秀的编码方式,究竟底层是怎么工作的呢?为什么它可以实现高效快速的数据传输呢?这一切都要从它的编码方式说起。
程序那些事
2021/08/24
3960
配图清新的Protobuf 编码&避坑指南
先简单介绍一下 Protocol Buffers(protobuf),它是Google开发的一种数据序列化协议(与XML、JSON类似)。它具有很多优点,但也有一些需要注意的缺点:
luozhiyun
2023/07/16
1.3K0
Protobuf编码指南
这个教程会介绍protocol buffer的二进制有线格式(binary wire format)。你并不是需要理解这些后才能在应用里使用protocol buffer,但是当你想知道不同的protocol buffer格式是如何影响编码后的消息体的体积时,这些知识会非常有用。
KevinYan
2019/10/13
1.4K0
理解Protobuf的数据编码规则
之前用Google的Protobuf感觉真是个很好用的东西,于是抽时间研究了下他的数据的存储方式,以后可以扩展其他语言的解析器。其实与其说是研究,不如说是翻译。这些文档里都有,可能有些地方理解的不太对,还请见谅。
owent
2018/08/01
1.4K0
gRPC & Protocol Buffers
gRPC 是一个高性能、开源、通用的RPC框架,由Google推出,基于HTTP/2协议标准设计开发,默认采用Protocol Buffers数据序列化协议,支持多种开发语言。gRPC提供了一种简单的方法来精确的定义服务,并且为客户端和服务端自动生成可靠的功能库。
Helloted
2022/06/08
8210
gRPC & Protocol Buffers
Protocol Buffers(2):编码与解码
在上一篇文章中我们提到,对于序列化后字节流,需要回答的一个重要问题是“从哪里到哪里是哪个数据成员”。
李拜六不开鑫
2019/04/23
1.8K0
Protocol Buffers(2):编码与解码
Protobuf - 更小、更快、更简单的交互式数据语言
Protocol buffers 是 Google 的一种语言中立、平台中立,可扩展,用于序列化结构化数据的交互式数据语言。相比 JSON、XML,它更小、更快、更简单。
frank.
2020/11/06
1.2K0
protobuf 序列化和反序列化
序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程,与之相对应的过程称之为反序列化(Unserialization)。序列化和反序列化主要用于解决在跨平台和跨语言的情况下, 模块之间的交互和调用,但其本质是为了解决数据传输问题。
洁洁
2024/03/15
7580
搞定Protocol Buffers (下)- 原来你是这样的pb
上图是从官网找的一个protocol buffers的序列化压测对比图,从图上来看protocol buffers表现相对还是比较优异的。
用户3904122
2022/06/29
1.2K0
搞定Protocol Buffers (下)- 原来你是这样的pb
详解PROTOCOL BUFFERS
Protocal Buffers是google推出的一种序列化协议。由于它的编码和解码的速度,已经编码后的大小控制的较好,因此它常常被用在RPC调用中,传递参数和结果。比如gRPC。
sunsky
2020/08/20
7810
详解PROTOCOL BUFFERS
浅谈 Protobuf 编码
作者:SG4YK,腾讯 PCG 后台开发工程师 近日简单学习了 Protobuf 中的编码实现,总结并整理成文。本文结构总体与 Protobuf 官方文档相似,不少内容也来自官方文档,并在官方文档的基础上添加作者理解的内容,如有出入请以官方文档为准。作者水平有限,难免有疏漏之处,欢迎指正并分享您的意见。 0x00 Before you start 简单来说,Protobuf 的编码是基于变种的 Base128。在学习 Protobuf 编码或是 Base128 之前,先来了解下 Base64 编码。
腾讯技术工程官方号
2021/07/15
1.9K0
相关推荐
大厂神器?Protobuf编码原理和避坑指南!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验