前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LWC 73: 790. Domino and Tromino Tiling

LWC 73: 790. Domino and Tromino Tiling

作者头像
用户1147447
发布2019-05-26 09:41:31
5550
发布2019-05-26 09:41:31
举报
文章被收录于专栏:机器学习入门

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://cloud.tencent.com/developer/article/1434715

LWC 73: 790. Domino and Tromino Tiling

传送门:790. Domino and Tromino Tiling

Problem:

We have two types of tiles: a 2x1 domino shape, and an “L” tromino shape. These shapes may be rotated. XX <- domino XX <- “L” tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7. (In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.)

Example:

Input: 3 Output: 5 Explanation:undefined The five different ways are listed below, different letters indicates different tiles: XYZ XXZ XYY XXY XYY XYZ YYZ XZZ XYY XXY

Note:

  • N will be in range 1, 1000.

思路:

动态规划,切分子问题。比如考虑N等于1可能出现的状态:

从上至下对应状态为0, 1, 2, 3,因此可以得到N=2时,每个状态的转移方程:

代码语言:javascript
复制
dp[i][0] = dp[i - 1][0] + dp[i - 1][3] + dp[i - 2][1] + dp[i - 2][2]
dp[i][1] = dp[i - 1][0] + dp[i - 1][2]
dp[i][2] = dp[i - 1][0] + dp[i - 1][1]
dp[i][3] = dp[i - 1][0]

代码如下:

代码语言:javascript
复制
    public int numTilings(int N) {
        long[][] dp = new long[N+1][4];
        int mod = 1000000007;
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 1;
        dp[1][3] = 1;
        for (int i = 2; i <= N; ++i) {
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][3] + dp[i - 2][1] + dp[i - 2][2]) % mod;
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % mod;
            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % mod;
            dp[i][3] = dp[i - 1][0] % mod;
        }
        return (int)dp[N][0];
    }

Python版本:

代码语言:javascript
复制
class Solution(object):
    def numTilings(self, N):
        """
        :type N: int
        :rtype: int
        """
        dp = [[0] * 4 for _ in range(N + 1)]
        mod = 1000000007
        dp[1][0] = dp[1][1] = dp[1][2] = dp[1][3] = 1
        for i in range(2, N + 1):
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][3] + dp[i - 2][1] + dp[i - 2][2]) % mod
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % mod
            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % mod
            dp[i][3] = dp[i - 1][0] % mod
        return dp[N][0]
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018年02月26日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • LWC 73: 790. Domino and Tromino Tiling
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档