前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tensorflow学习笔记(二十六):构建TF代码

tensorflow学习笔记(二十六):构建TF代码

作者头像
ke1th
发布2018-01-02 12:23:58
8300
发布2018-01-02 12:23:58
举报
文章被收录于专栏:漫漫深度学习路

如何构建TF代码

batch_size: batch的大小 mini_batch: 将训练样本以batch_size分组 epoch_size: 样本分为几个min_batch num_epoch : 训练几轮

读代码的时候应该关注的几部分

  1. 如何处理数据
  2. 如何构建计算图
  3. 如何计算梯度
  4. 如何Summary,如何save模型参数
  5. 如何执行计算图

写一个将数据分成训练集,验证集和测试集的函数

代码语言:javascript
复制
train_set, valid_set, test_set = split_set(data)

最好写一个管理数据的对象,将原始数据转化成mini_batch

代码语言:javascript
复制
class DataManager(object):
  #raw_data为train_set, valid_data或test_set
  def __init__(self, raw_data, batch_size):
    self.raw_data = raw_data
    self.batch_size = batch_size
    self.epoch_size = len(raw_data)/batch_size
    self.counter = 0 #监测batch index
  def next_batch(self):
    ...
    self.counter += 1
    return batched_x, batched_label, ...

计算图的构建在Model类中的__init__()中完成,并设置is_training参数

优点: 1. 因为如果我们在训练的时候加dropout的话,那么在测试的时候是需要把这个dropout层去掉的。这样的话,在写代码的时候,你就可以创建两个对象。这就相当于建了两个模型,然后让这两个模型参数共享,就可以达到训练测试一起运行的效果了。具体看下面代码。

代码语言:javascript
复制
class Model(object):
  def __init__(self, is_training, config, scope,...):#scope可以使你正确的summary
    self.is_training = is_training
    self.config = config
    #placeholder:用于feed数据
    # 一个train op
    self.graph(self.is_training) #构建图
    self.merge_op = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES,scope))
  def graph(self,is_training):
    ...
    #定义计算图
    self.predict = ...
    self.loss = ...

写个run_epoch函数

batch_size: batch的大小 mini_batch: 将训练样本以batch_size分组 epoch_size: 样本分为几个min_batch num_epoch : 训练几轮 如何编写run_epoch函数

代码语言:javascript
复制
#eval_op是用来指定是否需要训练模型,需要的话,传入模型的eval_op
#draw_ata用于接收 train_data,valid_data或test_data
def run_epoch(raw_data ,session, model, is_training_set, ...):
  data_manager = DataManager(raw_data, model.config.batch_size)

  #通过is_training_set来决定fetch哪些Tensor
  #add_summary, saver.save(....)

如何组织main函数

  1. 分解原始数据为train,valid,test
  2. 设置默认图
  3. 建图 trian, test 分别建图
  4. 一个或多个Saver对象,用来保存模型参数
  5. 创建session, 初始化变量
  6. 一个summary.FileWriter对象,用来将summary写入到硬盘中
  7. run epoch

FileWriterSaver对象,一个计算图只需要一个就够了,所以放在Model类的外面

附录

本篇博文总结下面代码写成, 有些地方和源码之间有不同。 下面是截取自官方代码:

代码语言:javascript
复制
class PTBInput(object):
  """The input data."""

  def __init__(self, config, data, name=None):
    self.batch_size = batch_size = config.batch_size
    self.num_steps = num_steps = config.num_steps
    self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
    self.input_data, self.targets = reader.ptb_producer(
        data, batch_size, num_steps, name=name)


class PTBModel(object):
  """The PTB model."""

  def __init__(self, is_training, config, input_):
    self._input = input_

    batch_size = input_.batch_size
    num_steps = input_.num_steps
    size = config.hidden_size
    vocab_size = config.vocab_size

    # Slightly better results can be obtained with forget gate biases
    # initialized to 1 but the hyperparameters of the model would need to be
    # different than reported in the paper.
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(
        size, forget_bias=0.0, state_is_tuple=True)
    if is_training and config.keep_prob < 1:
      lstm_cell = tf.contrib.rnn.DropoutWrapper(
          lstm_cell, output_keep_prob=config.keep_prob)
    cell = tf.contrib.rnn.MultiRNNCell(
        [lstm_cell] * config.num_layers, state_is_tuple=True)

    self._initial_state = cell.zero_state(batch_size, data_type())

    with tf.device("/cpu:0"):
      embedding = tf.get_variable(
          "embedding", [vocab_size, size], dtype=data_type())
      inputs = tf.nn.embedding_lookup(embedding, input_.input_data)

    if is_training and config.keep_prob < 1:
      inputs = tf.nn.dropout(inputs, config.keep_prob)

    # Simplified version of models/tutorials/rnn/rnn.py's rnn().
    # This builds an unrolled LSTM for tutorial purposes only.
    # In general, use the rnn() or state_saving_rnn() from rnn.py.
    #
    # The alternative version of the code below is:
    #
    # inputs = tf.unstack(inputs, num=num_steps, axis=1)
    # outputs, state = tf.nn.rnn(cell, inputs,
    #                            initial_state=self._initial_state)
    outputs = []
    state = self._initial_state
    with tf.variable_scope("RNN"):
      for time_step in range(num_steps):
        if time_step > 0: tf.get_variable_scope().reuse_variables()
        (cell_output, state) = cell(inputs[:, time_step, :], state)
        outputs.append(cell_output)

    output = tf.reshape(tf.concat_v2(outputs, 1), [-1, size])
    softmax_w = tf.get_variable(
        "softmax_w", [size, vocab_size], dtype=data_type())
    softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
    logits = tf.matmul(output, softmax_w) + softmax_b
    loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
        [logits],
        [tf.reshape(input_.targets, [-1])],
        [tf.ones([batch_size * num_steps], dtype=data_type())])
    self._cost = cost = tf.reduce_sum(loss) / batch_size
    self._final_state = state

    if not is_training:
      return

    self._lr = tf.Variable(0.0, trainable=False)
    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
                                      config.max_grad_norm)
    optimizer = tf.train.GradientDescentOptimizer(self._lr)
    self._train_op = optimizer.apply_gradients(
        zip(grads, tvars),
        global_step=tf.contrib.framework.get_or_create_global_step())

    self._new_lr = tf.placeholder(
        tf.float32, shape=[], name="new_learning_rate")
    self._lr_update = tf.assign(self._lr, self._new_lr)

  def assign_lr(self, session, lr_value):
    session.run(self._lr_update, feed_dict={self._new_lr: lr_value})

def run_epoch(session, model, eval_op=None, verbose=False):
  """Runs the model on the given data."""
  start_time = time.time()
  costs = 0.0
  iters = 0
  state = session.run(model.initial_state)

  fetches = {
      "cost": model.cost,
      "final_state": model.final_state,
  }
  if eval_op is not None:
    fetches["eval_op"] = eval_op

  for step in range(model.input.epoch_size):
    feed_dict = {}
    for i, (c, h) in enumerate(model.initial_state):
      feed_dict[c] = state[i].c
      feed_dict[h] = state[i].h

    vals = session.run(fetches, feed_dict)
    cost = vals["cost"]
    state = vals["final_state"]

    costs += cost
    iters += model.input.num_steps

    if verbose and step % (model.input.epoch_size // 10) == 10:
      print("%.3f perplexity: %.3f speed: %.0f wps" %
            (step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
             iters * model.input.batch_size / (time.time() - start_time)))

  return np.exp(costs / iters)

def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  with tf.Graph().as_default():
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)

    with tf.name_scope("Train"):
      train_input = PTBInput(config=config, data=train_data, name="TrainInput")
      with tf.variable_scope("Model", reuse=None, initializer=initializer):
        m = PTBModel(is_training=True, config=config, input_=train_input)
      tf.contrib.deprecated.scalar_summary("Training Loss", m.cost)
      tf.contrib.deprecated.scalar_summary("Learning Rate", m.lr)

    with tf.name_scope("Valid"):
      valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
      tf.contrib.deprecated.scalar_summary("Validation Loss", mvalid.cost)

    with tf.name_scope("Test"):
      test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mtest = PTBModel(is_training=False, config=eval_config,
                         input_=test_input)

    sv = tf.train.Supervisor(logdir=FLAGS.save_path)
    with sv.managed_session() as session:
      for i in range(config.max_max_epoch):
        lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
        m.assign_lr(session, config.learning_rate * lr_decay)

        print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
        train_perplexity = run_epoch(session, m, eval_op=m.train_op,
                                     verbose=True)
        print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
        valid_perplexity = run_epoch(session, mvalid)
        print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

      test_perplexity = run_epoch(session, mtest)
      print("Test Perplexity: %.3f" % test_perplexity)

      if FLAGS.save_path:
        print("Saving model to %s." % FLAGS.save_path)
        sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)


if __name__ == "__main__":
  tf.app.run()

参考资料 源码地址https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 如何构建TF代码
    • 读代码的时候应该关注的几部分
      • 写一个将数据分成训练集,验证集和测试集的函数
        • 最好写一个管理数据的对象,将原始数据转化成mini_batch
          • 计算图的构建在Model类中的__init__()中完成,并设置is_training参数
            • 写个run_epoch函数
              • 如何组织main函数
                • 附录
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档