前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >腾讯云批量计算介绍

腾讯云批量计算介绍

原创
作者头像
腾讯云计算产品团队
修改于 2017-09-20 02:47:44
修改于 2017-09-20 02:47:44
7.1K0
举报

批量计算概念介绍

引题:工作负载分类

工作负载的分类方法和标准多种多样,其中 Google 提出的一种简单的分类标准广受认可,即将工作负载分为服务型和批处理型。

  • 服务型 service
    • 长时间运行,理论上不会停止,对服务质量敏感,主要是线上业务
    • 例如 web 服务,e-mail 服务等
  • 批处理型 batch
    • 运行时间从几秒到几天不等,对短时性能波动相对不敏感,主要是离线业务
    • 例如日志分析
公有云上的批量计算

最初,公有云的工作负载以服务型负载为主,各大厂商也进行了诸多针对性优化。随着云计算的快速发展,越来越多的、不同行业的用户开始使用公有云,批处理型负载显著增加。针对批处理型负载的需求,我们也通过新的产品形式来满足用户。

  • 专注业务,支持大规模自动化调度与执行,为用户屏蔽资源细节。
  • 调度逻辑,支持 DAG 和优先级调度,满足用户复杂的业务处理逻辑。
  • 成本优化,支持资源的动态伸缩,按需分配资源,避免资源浪费,节省成本。
腾讯云 Batch 模型
  • 执行单元
    • Job,作业,一组关联 Task 的集合
    • Task,任务,指明执行逻辑和资源需求
    • TaskInstance,任务实例,原子执行单元,一个 Task 可并行执行多份
  • DAG依赖
    • 通过图拓扑表示 DAG 依赖,Job 是 DAG 图,Task 是点,依赖 Dependence 是边
    • Task 是依赖关系的维护单元,不使用 TaskInstance 作为依赖关系的维护单元是为了防止依赖关系爆炸
批量计算完整流程

上一小节是腾讯云 Batch 自身的逻辑模型。本节我们将视角提升到整个处理流程,涵盖调度、计算、存储等方面。流程示意图如下图所示。

  • 主要步骤
    1. 用户上传应用程序和输入文件到对象存储COS上
    2. 用户提交 Batch 作业
    3. Batch 创建 CVM 实例
    4. CVM 实例中启动 Batch agent,从 COS 下载应用程序和输入文件,执行任务实例
    5. Batch agent 上传输出文件到 COS
    6. 用户监控 Batch 作业的结果
    7. 用户在 Batch 作业完成后,从 COS 下载获得输出文件
  • 腾讯云闭环
    • 整个流程在腾讯云上实现调度、计算、存储闭环
    • Batch 提供调度分发能力
    • CVM 提供计算能力
    • COS 提供持久化存储能力

竞品调研关键问题

在进行产品规划、系统设计的过程中,我们对公有云批量计算产品进行了较为充分的调研,涵盖 AWS, Aliyun, Azure, Google Cloud等友商(其中 Google Cloud Batch 是 Google Dataflow 产品的一部分,专注数据处理,与其他竞品差别较大,不作为主要对比系)。我们从中汲取了大量养分,同时也发现对于一些关键问题和产品规划,不同厂商采用了不同的策略。对此,我们尝试分析背后的产品逻辑和各自优劣,结合目标用户的需求,选择确定了腾讯云批量计算的产品路线。

虚拟机与任务实例的耦合关系
  • AWS
    • 产品策略:作业与 VM 生命周期解耦。一个 VM 可以运行多个作业,作业分配到 VM 需要装箱。
    • 简评:AWS Batch 作业通过容器的方式执行,看起来可以快速启动,但是容器仍然需要运行在 VM 之中,VM 的规格和启停时机难以把握。在试用过程中,我们发现 AWS Batch 容易出现资源浪费和资源“假死锁”问题。客观来说,容器与 VM 2层概念增加了产品逻辑复杂度,而 AWS Batch 并没有完满的处理好这方面的产品逻辑。
    • 问题1 资源浪费
      • 在一个MaxvCPU(AWS Batch 产品概念,大意为计算环境可使用的 CPU 上限)为16C的环境中,用户先提交一个16C的作业A, AWS Batch 会自动创建一个16C的 EC2 实例执行作业A。然后用户再提交一个8C的作业B,在作业A完成之后,AWS Batch 会复用16C的 EC2 实例执行作业B。AWS Batch的收费策略是根据 EC2 实例收费,这样存在一个问题,在执行作业B的时候,Batch 用16C的 EC2 执行8C的作业,造成了资源浪费。实际上,用户提交作业的规格和吞吐量发生变化是较为常见的事情,这样的 case 比较容易出现。
      • 此外,作业执行完成后,EC2 不会立即销毁,通常会保留数十分钟后才会自动释放,对于不持续提交作业的用户,也会造成明显的资源浪费。
    • 问题2 资源“假死锁”
      • 在一个MaxvCPU为16C的环境中,用户先提交一个8C的作业A,AWS Batch 会自动创建一个8C的 EC2 实例来执行作业 A。然后提交一个16C的作业B。本来预期 AWS Batch 会立即销毁现有的 EC2 实例,然后创建一个新的16C EC2 实例来运行作业B。但是,实际情况要略差于预期,在作业B提交近一小时之后,AWS Batch才创建了16C的 EC2 实例,完成计算环境的调整,以至于用户一度认为 AWS Batch 出现了死锁 bug。虽然最终没有造成死锁,但是 AWS Batch 的调整延迟过大,影响用户体验。
  • Aliyun
    • 产品策略: Aliyun Batch 分为2种计算环境类型,AutoCluster 自动集群模式和 Cluster 固定集群模式。对于 AutoCluster 模式,任务实例与 VM 生命周期一致;对于 Cluster 模式,虽然任务实例与 VM 生命周期不一致,但是目前仍然采用1对1模式,即 VM 同时只运行一个任务实例。
    • 简评:Aliyun Batch,特别是 AutoCluster 模式,产品逻辑简单直接。
  • Azure
    • 产品策略: 任务与 VM 生命周期解耦。一个 VM 可以运行多个任务。与 AWS Batch 不同,任务分配到 VM 不进行装箱,而是通过参数设置,即一个 VM 可以同时运行 n 个任务,n 可设置。。
    • 简评:与 AWS Batch 类似,可能出现浪费资源的问题。不进行装箱,直接为 VM 分配 n 个任务的策略,对于异构化的任务,存在资源评估不准确的问题。
  • 用户反馈
    • 用户关心业务本身,对耦合关系无明显偏好,希望产品逻辑保持简洁直观,避免资源浪费。
  • 腾讯云做法
    • CVM 和 任务实例生命周期耦合,一一对应,执行任务实例前夕创建 CVM 实例,执行完成后立即销毁 CVM 实例。保证按需分配和使用资源,节省成本。
    • 同时,充分利用 CVM 快速创建优势,快速响应 Batch 业务。
执行单元的层级关系
  • AWS
    • 产品策略:执行单元为 Job,是原子执行单元,相当于腾讯云的 TaskInstance。
    • 简评:保证接口原子性。虽然可以通过指定前序 Job 来表示 Job 间的依赖关系,但是需要用户记录和维护前序 Job 的唯一 ID,并在提交后序 Job 时指定前序 Job 的唯一 ID,相当于用户需要参与维护DAG 关系。同时,AWS Batch 目前无法提供完成的 DAG 视图。
  • Aliyun
    • 产品策略:Job、Task、Instance三层单元
      • 简评:可以在 Job 内部实现 DAG 关系。Aliyun Batch 和 ECS 是两款产品,但是二者的 Instance 和 InstanceId 容易混淆。Aliyun Batch 中存在 InstanceId 的概念,却并非 ECS InstanceId,而是类似 Instance 在 Task 内部索引的概念。
  • Azure
    • 产品策略:具有 Job 和 Task 两层单元,Job 其实是类似队列或者任务集合的静态概念,Task 是其执行单元。
    • 简评:Azure Batch 中的 Task 类似于 AWS Batch 中的 Job,二者优缺点相似。
  • 用户反馈
    • 希望 Batch 产品可以优雅地处理 DAG 关系,同时对用户简单。
  • 腾讯云做法
    • 借鉴工作流系统 airflow 的命名方式,采用 Job、Task、TaskInstance 三层执行单元。
    • TaskInstance 与 CVM Instance 概念区分。虽然我们目前采用 TaskInstance 和 CVM Instance 生命周期一致的策略,但是二者本身不同,不要混淆。
CVM 用户是否可见
  • AWS
    • Batch 创建的虚拟机,在其控制台可见
  • Aliyun
    • Batch 创建的虚拟机,在其控制台不可见,不可直接登录。虽然 Aliyun Batch 提供了内网连通的拓展功能,但是产品体验有待提高。
  • Azure
    • Batch 创建的虚拟机,在其控制台可见
  • 用户反馈
    • 多方用户提到友商 Batch 创建虚拟机控制台不可见、无法登录的痛点。当出现问题时较难定位。
  • 腾讯云做法
    • 保证“搭积木式”的产品观
    • Batch 和用户使用相同的方式使用基础产品(例如 CVM),保证基础产品逻辑一致

系统设计

TaskInstance 状态机

腾讯云 Batch 包括 Job、Task、TaskInstance 三层执行单元,TaskInstance 系原子执行单元,这里介绍其状态机。Job、Task 的状态依赖其所含 TaskInstance 的状态,不做展开。

  • SUBMITTED
    • 已经接收到 Job 并解析拆分。
    • 如果存在依赖项,则任务实例进入 PENDING 状态,否则进入 RUNNABLE 状态。
  • PENDING
    • 驻留在队列中,因为等待其他依赖任务,而无法运行
    • 在满足依赖关系后,任务实例将进入 RUNNABLE 状态。
  • RUNNABLE
    • 驻留在队列中且没有任何未完成依赖项,因为没有资源或者资源配额不足而暂时无法运行
    • 当资源足够时,任务实例会被调度运行。
  • STARTING
    • 任务实例完成调度开始执行和下发,任务实例尚未启动执行
  • RUNNING
    • 任务实例在计算环境中运行
    • 当应用程序退出时,进程退出代码将确定任务实例是成功还是失败。退出代码 0 表示成功,非零退出代码表示失败。
  • SUCCEEDED
    • 任务实例成功完成,返回码为 0
  • FAILED
    • 在执行所有可用尝试后,任务实例失败。
系统架构与设计细节

定位为工作流 workflow 系统,适用于 Batch 场景,命名为 Wonderflow。

  • Wonderflow API
    1. 生成唯一 JobId,并将 Job 基本信息提交到数据库
    2. 将 Job 完整信息发送至 MQ 中
    3. 向调用方返回 JobId
  • 依赖关系
    • Job 拆分时,根据有无依赖,将 TaskInstance 的状态设置为 PENDING 或者 RUNNABLE
    • TaskInstance 完成后,会变更关联对象的状态,可能包括 Task、Job、后续 Task、后续 TaskInstance 的状态。
  • 调度策略
    • 以 owner 为粒度进行集中调度,查询同一 owner、状态为 RUNNABLE 的 TaskInstance,按照优先级排序,逐个遍历
      1. 如果 TaskInstance 有足够资源配额,则下发执行,将 TaskInstance 信息发送至pre-executor MQ
      2. 如果 TaskInstance 无足够资源配额,则continue
    • owner 之间并行调度;同一 owner 串行调度,避免无意义加锁。
    • TaskInstance 存储使用数据库,不使用优先级队列,避免“队列头阻塞”或者优先级变化。
  • Wonderflow 内部回滚
    • pre-executor 和 post-executor 相对复杂,需要内部回滚
    • 例如 pre-executor 如果执行失败,进行回滚,销毁已经创建的 CVM 实例
  • Wonderflow 与 CVM API 交互
    • 支持两种模式,调用内部 CVM API 和 SDK
    • 默认采用 CVM API 模式,应用在腾讯公有云场景下
    • 可选通过 SDK 模式,与 CVM 用户行为完全一致,意味着用户可以在自己的 CVM 集群中搭建 Wonderflow 系统并直接使用。
  • 与CVM实例的交互
    • 镜像只需安装 cloudinit,而无须提前嵌入 Batch agent,即可运行批量计算作业
    • cloudinit 是业界认可的标准初始化工具,镜像制作标准规范、简易
    • 腾讯云计划近期更新主流公有镜像,使之支持 cloudinit
设计原则小结
  • “搭积木”
    • 批量计算保证基础产品的原生能力,不进行封装或阉割。批量计算和用户使用基础产品的方式一致,保证产品表现一致
  • 多调度器并发架构
    • 多调度器并发调度,用户(owner)级别并发,类似于 Google Omega 的无锁乐观并发调度架构, 可提升调度系统的吞吐率。用户(owner)内部串行,保证按照优先级调度下发,同时避免无意义加锁。
    • 在产品调度策略上,目前批量计算对所有用户采用对等公平策略。如果特定场景(比如私有云环境)需要采用相对公平策略,不同用户具有不同的权重值,则需要增加一个调度组件和一层调度策略,决定优先为哪个/哪些用户进行调度。
  • 轻量 API
    • API 逻辑轻量,保持快速响应
    • 复杂逻辑交由异步消费者完成
  • 消费者处理逻辑简洁明确
    • TaskInstance 状态机相对复杂,但是每类消费者只做一类事,相当于解耦了状态机。
    • 例如,Splitter 负责拆分Job,根据 TaskInstance 有无依赖将状态置为 PENDING 或者 RUNNABLE;Scheduler 只负责调度下发状态为 RUNNABLE 的 TaskInstance,不会考虑依赖关系;post-executor 在销毁 CVM 实例之后,负责变更 TaskInstance 状态和关联对象状态,会将已经无依赖的后续 TaskInstance 状态从 PENDING 变更为 RUNNABLE。

核心功能与产品优势

  • 自动托管
    • 自动调度、下发、执行海量作业,为用户屏蔽资源细节,专注业务本身。
  • DAG 依赖
    • 通过 DAG 拓扑形式,描述任务间依赖关系,根据依赖关系保证任务的先后执行顺序。通过简单形式满足用户复杂处理逻辑的业务需求。
  • 优先级调度
    • 对于无依赖任务实例,基于优先级进行先后调度。
  • 计算资源动态伸缩
    • 资源与任务实例生命周期一致,根据业务需求动态扩展和释放计算资源,按需分配资源,避免浪费,节省成本。
  • 天然集成
    • Batch 与腾讯云基础产品天然集成,涵盖计算(CVM)、网络(VPC)、存储(COS/CFS)、安全(安全组)等多个方面,用户业务可在腾讯云上轻松闭环。
    • 复用基础产品优势,例如腾讯云 CVM 快速创建。
  • 调试 Debug 模式
    • TaskInstance 失败后,CVM 实例不销毁,保留现场
    • 批量计算创建的 CVM 实例,在 CVM 控制台可见、可登陆,便于用户观察应用运行状态。

批量计算作为一款新产品,可能还存在一些不足,也欢迎大家多多试用 & 反馈问题。

参考

[1] Schwarzkopf, Malte, et al. "Omega: flexible, scalable schedulers for large compute clusters." Proceedings of the 8th ACM European Conference on Computer Systems. ACM, 2013. [2] Verma, Abhishek, et al. "Large-scale cluster management at Google with Borg." Proceedings of the Tenth European Conference on Computer Systems. ACM, 2015. [3] Konwinski A D. Multi-agent cluster scheduling for scalability and flexibility[M]. University of California, Berkeley, 2012. [4] AWS Batch. https://aws.amazon.com/cn/batch/ [5] Azure Batch. https://azure.microsoft.com/en-us/services/batch/ [6] Aliyun BatchCompute. https://www.aliyun.com/product/batchcompute [7] Google Dataflow. https://cloud.google.com/dataflow/

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
腾讯云批量计算介绍
工作负载的分类方法和标准多种多样,其中 Google 提出的一种简单的分类标准广受认可,即将工作负载分为服务型和批处理型。
用户4918923
2019/03/24
4.6K0
腾讯云批量计算:用搭积木的方式构建高性能计算系统
本文介绍了腾讯云批量计算在高性能计算场景下的优势,通过对比传统超算集群和云计算资源的不同,分析了腾讯云批量计算在成本、效率、易用性、场景覆盖、资源调度、安全合规等方面的优势。同时,文章还分享了腾讯云批量计算如何帮助企业优化计算流程,提升业务效率,降低企业成本,并推动高性能计算在更多场景的广泛应用。
腾讯云计算产品团队
2017/11/15
4.8K2
腾讯云批量计算:用搭积木的方式构建高性能计算系统
视频分布式转码-只需批量计算一个API
网络流量分析机构Sandvine 2018年10月的《全球互联网现象报告》中显示,在全球整体的互联网下行流量中,视频占到了近58%。现在原始视频的分辨率越来越高,但是在互联网带宽有限的情况下,大部分视频提供商都需要将原始视频转码成多种清晰度的视频,便于用户在不同的网络环境中选择不同清晰度的视频进行观看。因此,视频转码成了必不可少的技术环节。
风之泪
2020/01/26
2.3K1
Volcano火山:容器与批量计算的碰撞
Kubernetes 是当前非常流行的容器编排框架,在其发展早期重点以微服务类应用为主。
CNCF
2020/06/04
2K0
Volcano火山:容器与批量计算的碰撞
大规模运行MPI应用
在现代科学和工程中,数值计算工程师会遇到大量复杂的数学计算问题。这些问题突出的共性表现在高维数、计算规模大、多时空尺度、强非线性等方面。批量处理Batch拥有一套完整的并行计算框架,适配常见的并行模型(MPI应用)。利用海量弹性的云资源,有力地支撑高性能科学计算应用软件和算法。
用户1078344
2019/02/25
2.3K0
单集群10万节点 走进腾讯云分布式调度系统VStation
云计算并非无中生有的概念,它将普通的单台PC计算能力通过分布式调度软件连接起来。其最核心的问题是如何把一百台、一千台、一万台机器高效地组织起来,灵活进行任务调度和管理,从而像使用单台机器一样方便地使用多台机器。目前,业界已存在多种分布式调度实现方案,比较知名的有 Hadoop YARN、Mesos、Google Borg 等。 区别于以上调度系统,腾讯云的 VStation 从诞生之初,便肩负着大规模调度、海量并发和支持异构计算的历史使命,历经五年的打磨和历练,VStation 通过消息压缩、镜像缓存、快照
用户1263954
2018/05/30
3.1K0
腾讯云弹性伸缩工程优化揭秘
本期溪歪歪专栏将带大家一起探索,关于腾讯云弹性计算产品的技术设计要点。 在各行各业都一定程度上适用这句话:Those who talk don’t know, and those who know don’t talk. —— 而我相信,你终将成为那个懂得原理、能做成事还乐于分享的高手。 弹性计算相关背景介绍 云计算底层离不开虚拟化技术,虚拟化让人们有安全感和幸福感,它解决了资源的安全隔离和高效利用两大问题。操作虚拟机,就像在泳道里游泳,因为有挡波阻浪的泳道线,我们无需关心旁边泳道里的人是何种泳姿
腾讯云计算产品团队
2021/07/12
3.4K0
腾讯云批量计算型BS1云服务器配置CPU内存性能注意事项
腾讯云批量型服务器具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。腾讯云百科分享腾讯云批量计算型BS1云服务器配置CPU内存性能注意事项:
上云小秘书
2019/08/19
4.3K0
腾讯云批量计算型BS1云服务器配置CPU内存性能注意事项
CNCF Volcano 核心架构和场景分析
随着业务业务场景不断丰富,批量计算也由传统的HPC逐渐扩展到大数据、AI等多种场景,但各个领域独立发展,呈现出生态割裂、技术栈不兼容,资源利用率低等问题,严重影响批量计算的进一步发展
用户5252199
2022/11/22
1.9K0
CNCF Volcano 核心架构和场景分析
batch-compute & GPU分布式机器学习
当用户提交一些机器学习任务时,往往需要大规模的计算资源,但是对于响应时间并没有严格的要求。在这种场景下,首先使用腾讯云的batch-compute(批量计算)产品来自动化提交用户的任务,然后使用分布式+gpu的方式解决算力问题,在任务完成后通知用户,是一个可行的解决方案。
用户7480322
2020/07/17
1.2K0
腾讯云批量计算型BC1实例配置性能使用场景及注意事项
腾讯云批量型实例具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。InstanceTypes分享腾讯云批量计算型BC1实例配置性能包括CPU、内存、使用场景及购买注意事项等信息:
用户2416682
2019/06/01
1K0
腾讯云批量计算型BC1实例配置性能使用场景及注意事项
弹性伸缩工程优化探秘
在各行各业都一定程度上适用这句话:Those who talk don’t know, and those who know don’t talk.
溪歪歪
2021/06/29
4.9K9
弹性伸缩工程优化探秘
童航君:腾讯云CIS服务和clear container
今天我讲的主要是关于腾讯云最近新上的一款产品CIS。我自加入腾讯云以来就一直在负责CIS的开发工作。不多说,我们直接进入主题。
腾讯云开发者社区技术沙龙
2018/07/06
2.8K0
童航君:腾讯云CIS服务和clear container
slurm--高吞吐量计算管理指南
这篇文章包含了Slurm管理员的信息,专门针对高吞吐量计算,即执行许多短作业。为高吞吐量计算获得最佳性能需要一些调整。
姚华
2023/02/22
1.4K0
Volcano设计原理全面解读,一看就懂!
Volcano是一个Kubernetes云原生的批量计算平台,也是CNCF的首个批量计算项目。
CNCF
2020/11/17
2.5K0
Volcano设计原理全面解读,一看就懂!
自动增量计算:构建高性能数据分析系统的任务编排
在起始的那篇《金融 Python 即服务:业务自助的数据服务模式》,我们介绍了:使用 Python 如何使用作为数据系统的 wrapper 层?在这一篇文章里,我们将继续之前的话题,介绍如何使用 Python 作为计算引擎核心的胶水层,即:如何使用 Python 构建 DAG(有向无环图,Directed Acyclic Graph) 任务?
Phodal
2023/01/04
1.4K0
自动增量计算:构建高性能数据分析系统的任务编排
那些年我们用过的流计算框架
数据时代,从数据中获取业务需要的信息才能创造价值,这类工作就需要计算框架来完成。传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决。 基于此,一种新的数据计算结构---流计算方式出现了,它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送
CSDN技术头条
2018/02/08
4.2K0
那些年我们用过的流计算框架
小白也能玩转Kubernetes 你与大神只差这几步
6月30日,腾讯云联合InfoQ举办的云+社区技术沙龙,以Kubernetes 上云一键部署、云上大规模计算平台构建、CIS底层技术实现、Tencent Hub技术架构与DevOps落地实践等五大主题内容,分享容器与k8s技术的部署优化与应用实践。本文整理了讲师演讲精彩内容!
腾讯云开发者社区技术沙龙
2018/07/05
3.3K0
你不可不知的任务调度神器-AirFlow
Airflow 是一个编排、调度和监控workflow的平台,由Airbnb开源,现在在Apache Software Foundation 孵化。AirFlow 将workflow编排为tasks组成的DAGs,调度器在一组workers上按照指定的依赖关系执行tasks。同时,Airflow 提供了丰富的命令行工具和简单易用的用户界面以便用户查看和操作,并且Airflow提供了监控和报警系统。
王知无-import_bigdata
2021/01/06
3.9K0
你不可不知的任务调度神器-AirFlow
腾讯大数据套件带你玩转大数据
前言 ‍ 人类每一次大的技术变革都是先在新兴产业生根发芽,再慢慢把触角伸到传统行业。在当前这股由IT(Information Technology)向DT(Data Technology)转变的技术浪潮中,互联网行业成为云计算、大数据等高新技术的试验田。经过近十年的发展,随着大数据技术的不断成熟以及互联网应用案例的普及,"数据驱动业务"的模式逐渐得到各行各业的广泛认同,“互联网+”战略的提出更是为大数据从互联网向其他行业的传播吹来一阵东风。腾讯作为互联网企业的代表,早在09年就开始探索建设大数据平台,经过批
腾讯大数据
2018/01/26
2K0
相关推荐
腾讯云批量计算介绍
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档