我目前正在进行我的第一个“真正的”DL项目,即(惊喜)预测股票走势。我知道我以1000:1的比例做出任何有用的事情,但我很享受它,并希望看到它完成,我在几个星期的尝试中学到了比前6个月完成MOOC的更多的东西。
我正在使用Keras构建一个LSTM来预测下一步,并尝试将该任务作为分类(向上/向下/稳定)和现在作为回归问题。这两者都导致了类似的障碍,因为我的验证损失从第一个时代开始就没有改善过。
我可以让模型过拟合,使得MSE的训练损失接近于零(如果分类,则准确率为100% ),但在任何阶段,验证损失都不会减少。对于我未经训练的眼睛来说,这是过度拟合,所以我添加了不同程度的辍学,但所有这些都扼杀了模型/训练精度的学习,并且在验证精度方面没有显示出任何改进。
我已经尝试改变了大量的超参数-学习率,优化器,批处理大小,回看窗口,#层,#单位,dropout,#samples等,也尝试了数据的子集和特征的子集,但我就是不能让它工作,所以我非常感谢任何帮助。
下面的代码(我知道它不是很漂亮):
# Import saved full dataframe ~ 200 features
import feather
df = feather.read_dataframe('df_feathered')
df.set_index('time', inplace=True)
# Difference the dataset to make stationary
df = df.diff(periods=1, axis=0)
# MAKE LARGE SAMPLE FOR TESTING
df_train = df.loc['2017-3-1':'2017-6-30']
df_val = df.loc['2017-7-1':'2017-8-31']
df_test = df.loc['2017-9-1':'2017-9-30']
# Make x_train, x_val sets by dropping target variable
x_train = df_train.drop('close+1', axis=1)
x_val = df_val.drop('close+1', axis=1)
# Scale the training data first then fit the transform to the test set
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_val)
# scaler = MinMaxScaler(feature_range=(0,1))
# x_train = scaler.fit_transform(df_train1)
# x_test = scaler.transform(df_val1)
# Create y_train, y_test, simply target variable for regression
y_train = df_train['close+1']
y_test = df_val['close+1']
# Define Lookback window for LSTM input
sliding_window = 15
# Convert x_train, x_test, y_train, y_test into 3d array (samples,
timesteps, features) for LSTM input
dataXtrain = []
for i in range(len(x_train)-sliding_window-1):
a = x_train[i:(i+sliding_window), 0:(x_train.shape[1])]
dataXtrain.append(a)
dataXtest = []
for i in range(len(x_test)-sliding_window-1):
a = x_test[i:(i+sliding_window), 0:(x_test.shape[1])]
dataXtest.append(a)
dataYtrain = []
for i in range(len(y_train)-sliding_window-1):
dataYtrain.append(y_train[i + sliding_window])
dataYtest = []
for i in range(len(y_test)-sliding_window-1):
dataYtest.append(y_test[i + sliding_window])
# Make data the divisible by a variety of batch_sizes for training
# Started at 1000 to not include replaced NaN values
dataXtrain = np.array(dataXtrain[1000:172008])
dataYtrain = np.array(dataYtrain[1000:172008])
dataXtest = np.array(dataXtest[1000:83944])
dataYtest = np.array(dataYtest[1000:83944])
# Checking input shapes
print('dataXtrain size is: {}'.format((dataXtrain).shape))
print('dataXtest size is: {}'.format((dataXtest).shape))
print('dataYtrain size is: {}'.format((dataYtrain).shape))
print('dataYtest size is: {}'.format((dataYtest).shape))
### ACTUAL LSTM MODEL
batch_size = 256
timesteps = dataXtrain.shape[1]
features = dataXtrain.shape[2]
# Model set-up, stacked 4 layer stateful LSTM
model = Sequential()
model.add(LSTM(512, return_sequences=True, stateful=True,
batch_input_shape=(batch_size, timesteps, features)))
model.add(LSTM(256,stateful=True, return_sequences=True))
model.add(LSTM(256,stateful=True, return_sequences=True))
model.add(LSTM(128,stateful=True))
model.add(Dense(1, activation='linear'))
model.summary()
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=5, min_lr=0.000001, verbose=1)
def coeff_determination(y_true, y_pred):
from keras import backend as K
SS_res = K.sum(K.square( y_true-y_pred ))
SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) )
return ( 1 - SS_res/(SS_tot + K.epsilon()) )
model.compile(loss='mse',
optimizer='nadam',
metrics=[coeff_determination,'mse','mae','mape'])
history = model.fit(dataXtrain, dataYtrain,validation_data=(dataXtest, dataYtest),
epochs=100,batch_size=batch_size, shuffle=False, verbose=1, callbacks=[reduce_lr])
score = model.evaluate(dataXtest, dataYtest,batch_size=batch_size, verbose=1)
print(score)
predictions = model.predict(dataXtest, batch_size=batch_size)
print(predictions)
import matplotlib.pyplot as plt
%matplotlib inline
#plt.plot(history.history['mean_squared_error'])
#plt.plot(history.history['val_mean_squared_error'])
plt.plot(history.history['coeff_determination'])
plt.plot(history.history['val_coeff_determination'])
#plt.plot(history.history['mean_absolute_error'])
#plt.plot(history.history['mean_absolute_percentage_error'])
#plt.plot(history.history['val_mean_absolute_percentage_error'])
#plt.title("MSE")
plt.ylabel("R2")
plt.xlabel("epoch")
plt.legend(["train", "val"], loc="best")
plt.show()
plt.plot(history.history["loss"][5:])
plt.plot(history.history["val_loss"][5:])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "val"], loc="best")
plt.show()
plt.figure(figsize=(20,8))
plt.plot(dataYtest)
plt.plot(predictions)
plt.title("Prediction")
plt.ylabel("Price")
plt.xlabel("Time")
plt.legend(["Truth", "Prediction"], loc="best")
plt.show()
发布于 2018-12-19 10:45:53
也许你应该记住,你是在预测袜子的回报,这很可能预测不到任何东西。因此,增加val_loss
一点都不是过度拟合。与其添加更多的辍学,也许你应该考虑添加更多的层来增加它的功能。
发布于 2018-02-04 08:34:17
尽量降低学习率(暂时不要辍学)。
你为什么要使用
shuffle=False
在fit()函数中?
https://stackoverflow.com/questions/48542473
复制相似问题