Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Google Earth Engine ——MYD09A1.006 Aqua Surface Reflectance 8-DayAqua MODIS 1-7带500米分辨率

Google Earth Engine ——MYD09A1.006 Aqua Surface Reflectance 8-DayAqua MODIS 1-7带500米分辨率

作者头像
此星光明
发布于 2024-02-02 03:06:36
发布于 2024-02-02 03:06:36
18600
代码可运行
举报
运行总次数:0
代码可运行

The MYD09A1 V6 product provides an estimate of the surface spectral reflectance of Aqua MODIS bands 1-7 at 500m resolution and corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the seven reflectance bands is a quality layer and four observation bands. For each pixel, a value is selected from all the acquisitions within the 8-day composite on the basis of high observation coverage, low view angle, the absence of clouds or cloud shadow, and aerosol loading.

Documentation:

MYD09A1 V6产品提供了Aqua MODIS 1-7带500米分辨率的表面光谱反射率的估计,并对大气条件如气体、气溶胶和瑞利散射进行了校正。与七个反射带一起的是一个质量层和四个观测带。对于每个像素,根据高观测覆盖率、低视角、无云或云影以及气溶胶负荷,从8天合成的所有采集中选择一个值。

Resolution

500 meters

Bands Table

Name

Description

Min

Max

Units

Wavelength

Scale

sur_refl_b01

Surface reflectance for band 1

-100

16000

620-670nm

0.0001

sur_refl_b02

Surface reflectance for band 2

-100

16000

841-876nm

0.0001

sur_refl_b03

Surface reflectance for band 3

-100

16000

459-479nm

0.0001

sur_refl_b04

Surface reflectance for band 4

-100

16000

545-565nm

0.0001

sur_refl_b05

Surface reflectance for band 5

-100

16000

1230-1250nm

0.0001

sur_refl_b06

Surface reflectance for band 6

-100

16000

1628-1652nm

0.0001

sur_refl_b07

Surface reflectance for band 7

-100

16000

2105-2155nm

0.0001

QA

Surface reflectance 500m band quality control flags

0

QA Bitmask

Bits 0-1: MODLAND QA bits 0: Corrected product produced at ideal quality - all bands1: Corrected product produced at less than ideal quality - some or all bands2: Corrected product not produced due to cloud effects - all bands3: Corrected product not produced for other reasons - some or all bands, may be fill value (11) [Note that a value of (11) overrides a value of (01)]Bits 2-5: Band 1 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBits 6-9: Band 2 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBits 10-13: Band 3 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBits 14-17: Band 4 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBits 18-21: Band 5 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBits 22-25: Band 6 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBits 26-29: Band 7 data quality, four bit range 0: Highest quality7: Noisy detector8: Dead detector, data interpolated in L1B9: Solar zenith ≥ 86 degrees10: Solar zenith ≥ 85 and < 86 degrees11: Missing input12: Internal constant used in place of climatological data for at least one atmospheric constant13: Correction out of bounds, pixel constrained to extreme allowable value14: L1B data faulty15: Not processed due to deep ocean or cloudsBit 30: Atmospheric correction performed 0: No1: YesBit 31: Adjacency correction performed 0: No1: Yes

SolarZenith

MODIS Solar zenith angle

0

18000

Degrees

0.01

ViewZenith

MODIS view zenith angle

0

18000

Degrees

0.01

RelativeAzimuth

MODIS relative azimuth angle

-18000

18000

Degrees

0.01

StateQA

Surface reflectance 500m state flags

0

StateQA Bitmask

Bits 0-1: Cloud state 0: Clear1: Cloudy2: Mixed3: Not set, assumed clearBit 2: Cloud shadow 0: No1: YesBits 3-5: Land/water flag 0: Shallow ocean1: Land2: Ocean coastlines and lake shorelines3: Shallow inland water4: Ephemeral water5: Deep inland water6: Continental/moderate ocean7: Deep oceanBits 6-7: Aerosol quantity 0: Climatology1: Low2: Average3: HighBits 8-9: Cirrus detected 0: None1: Small2: Average3: HighBit 10: Internal cloud algorithm flag 0: No cloud1: CloudBit 11: Internal fire algorithm flag 0: No fire1: FireBit 12: MOD35 snow/ice flag 0: No1: YesBit 13: Pixel is adjacent to cloud 0: No1: YesBit 14: BRDF correction performed data 0: No1: YesBit 15: Internal snow mask 0: No snow1: Snow

DayOfYear

Julian day of the year for the pixel

1

366

  • Bits 0-1: MODLAND QA bits
    • 0: Corrected product produced at ideal quality - all bands
    • 1: Corrected product produced at less than ideal quality - some or all bands
    • 2: Corrected product not produced due to cloud effects - all bands
    • 3: Corrected product not produced for other reasons - some or all bands, may be fill value (11) [Note that a value of (11) overrides a value of (01)]
  • Bits 2-5: Band 1 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 6-9: Band 2 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 10-13: Band 3 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 14-17: Band 4 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 18-21: Band 5 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 22-25: Band 6 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 26-29: Band 7 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bit 30: Atmospheric correction performed
    • 0: No
    • 1: Yes
  • Bit 31: Adjacency correction performed
    • 0: No
    • 1: Yes

SolarZenithMODIS Solar zenith angle018000Degrees0.01ViewZenithMODIS view zenith angle018000Degrees0.01RelativeAzimuthMODIS relative azimuth angle-1800018000Degrees0.01StateQASurface reflectance 500m state flags0StateQA Bitmask

  • Bits 0-1: Cloud state
    • 0: Clear
    • 1: Cloudy
    • 2: Mixed
    • 3: Not set, assumed clear
  • Bit 2: Cloud shadow
    • 0: No
    • 1: Yes
  • Bits 3-5: Land/water flag
    • 0: Shallow ocean
    • 1: Land
    • 2: Ocean coastlines and lake shorelines
    • 3: Shallow inland water
    • 4: Ephemeral water
    • 5: Deep inland water
    • 6: Continental/moderate ocean
    • 7: Deep ocean
  • Bits 6-7: Aerosol quantity
    • 0: Climatology
    • 1: Low
    • 2: Average
    • 3: High
  • Bits 8-9: Cirrus detected
    • 0: None
    • 1: Small
    • 2: Average
    • 3: High
  • Bit 10: Internal cloud algorithm flag
    • 0: No cloud
    • 1: Cloud
  • Bit 11: Internal fire algorithm flag
    • 0: No fire
    • 1: Fire
  • Bit 12: MOD35 snow/ice flag
    • 0: No
    • 1: Yes
  • Bit 13: Pixel is adjacent to cloud
    • 0: No
    • 1: Yes
  • Bit 14: BRDF correction performed data
    • 0: No
    • 1: Yes
  • Bit 15: Internal snow mask
    • 0: No snow
    • 1: Snow

DayOfYearJulian day of the year for the pixel1366

使用说明:

Please visit LP DAAC 'Citing Our Data' page for information on citing LP DAAC datasets.

数据引用:

LP DAAC - MYD09A1

代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
var dataset = ee.ImageCollection('MODIS/006/MYD09A1')
                  .filter(ee.Filter.date('2018-01-01', '2018-05-01'));
var trueColor =
    dataset.select(['sur_refl_b01', 'sur_refl_b04', 'sur_refl_b03']);
var trueColorVis = {
  min: -100.0,
  max: 3000.0,
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(trueColor, trueColorVis, 'True Color');
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Google Earth Engine ——MODOCGA V6海洋反射率产品由Terra MODIS 8-16波段的1公里反射率数据1km
The MODOCGA V6 ocean reflectance product consists of 1 kilometer reflectance data from Terra MODIS bands 8-16. The product is referred to as ocean reflectance, because bands 8-16 are used primarily to produce ocean products, but this is not an ocean product as the tiles produced are land tiles.
此星光明
2024/02/02
1900
Google Earth Engine ——MODOCGA V6海洋反射率产品由Terra MODIS 8-16波段的1公里反射率数据1km
Google Earth Engine ——MYD09GA.006 Aqua 地表反射率 Daily Global 1km and 500m在没有大气散射或吸收的情况下在地
The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric scattering or absorption. Low-level data are corrected for atmospheric gases and aerosols. MYD09GA version 6 provides bands 1-7 in a daily gridded L2G product in the sinusoidal projection, including 500m reflectance values and 1km observation and geolocation statistics.
此星光明
2024/02/02
3170
Google Earth Engine ——MYD09GA.006 Aqua 地表反射率 Daily Global 1km and 500m在没有大气散射或吸收的情况下在地
Google Earth Engine ——MYD09Q1.006 Aqua 地表反射率 8-Day Global 250m提供了第1和第2波段的表面光谱反射率的估计,并对气体、气溶胶和瑞利散射等校正
The MYD09Q1 product provides an estimate of the surface spectral reflectance of bands 1 and 2 at 250m resolution and corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the two reflectance bands, a quality layer is also included. For each pixel, a value is selected from all the acquisitions within the 8-day composite on the basis of high observation coverage, low view angle, the absence of clouds or cloud shadow, and aerosol loading.
此星光明
2024/02/02
2150
Google Earth Engine ——MYD09Q1.006 Aqua 地表反射率 8-Day Global 250m提供了第1和第2波段的表面光谱反射率的估计,并对气体、气溶胶和瑞利散射等校正
PIE-engine 教程 ——MODIS影像去云教程(山西省为例)
本次我们将分别使用两个流程完成对MODIS影像去除云,第一个就是先去云然后再合成,第二个方式是先合成后去云,我们通常情况下一般都是先去云再合成。
此星光明
2024/02/02
7200
PIE-engine 教程 ——MODIS影像去云教程(山西省为例)
Google Earth Engine ——MODIS/006/MYD09GQ表面反射率产品提供了在没有大气散射或吸收的情况下在地面测量的表面光谱反射率的估计。低层数据经过大气气体和气溶胶的校正。
The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric scattering or absorption. Low-level data are corrected for atmospheric gases and aerosols. MYD09GQ version 6 provides bands 1 and 2 at a 250m resolution in a daily gridded L2G product in the Sinusoidal projection, including a QC and five observation layers. This product is meant to be used in conjunction with the MOD09GA where important quality and viewing geometry information is stored.
此星光明
2024/02/02
2380
Google Earth Engine ——MODIS/006/MYD09GQ表面反射率产品提供了在没有大气散射或吸收的情况下在地面测量的表面光谱反射率的估计。低层数据经过大气气体和气溶胶的校正。
Google Earth Engine ——MYD13Q1.006 Aqua Vegetation Indices 16-Day Global 250m分辨率(NDVI/EVI)数据集
The MYD13Q1 V6 product provides a Vegetation Index (VI) value at a per pixel basis. There are two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI) which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI) that minimizes canopy background variations and maintains sensitivity over dense vegetation conditions. The EVI also uses the blue band to remove residual atmosphere contamination caused by smoke and sub-pixel thin cloud clouds. The MODIS NDVI and EVI products are computed from atmospherically corrected bi-directional surface reflectances that have been masked for water, clouds, heavy aerosols, and cloud shadows.
此星光明
2024/02/02
2050
Google Earth Engine ——MYD13Q1.006 Aqua Vegetation Indices 16-Day Global 250m分辨率(NDVI/EVI)数据集
Google Earth Engine ——MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250m归一化植被指数(NDVI)和增强植被指数EVI
The MOD13Q1 V6 product provides a Vegetation Index (VI) value at a per pixel basis. There are two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI) which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI) that minimizes canopy background variations and maintains sensitivity over dense vegetation conditions. The EVI also uses the blue band to remove residual atmosphere contamination caused by smoke and sub-pixel thin cloud clouds. The MODIS NDVI and EVI products are computed from atmospherically corrected bi-directional surface reflectances that have been masked for water, clouds, heavy aerosols, and cloud shadows.
此星光明
2024/02/02
2640
Google Earth Engine ——MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250m归一化植被指数(NDVI)和增强植被指数EVI
Google Earth Engine——VNP13算法过程产生三种植被指数。(1)归一化差异植被指数(NDVI),(2)增强植被指数(EVI),以及(3)增强植被指数-2(EVI2)。
The Suomi National Polar-Orbiting Partnership (S-NPP) NASA Visible Infrared Imaging Radiometer Suite (VIIRS) Vegetation Indices (VNP13A1) data product provides vegetation indices by a process of selecting the best available pixel over a 16-day acquisition period at 500 meter resolution. The VNP13 data products are designed after the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua Vegetation Indices product suite to promote the continuity of the Earth Observation System (EOS) mission.
此星光明
2024/02/02
3120
Google Earth Engine——VNP13算法过程产生三种植被指数。(1)归一化差异植被指数(NDVI),(2)增强植被指数(EVI),以及(3)增强植被指数-2(EVI2)。
Google Earth Engine——NOAA/CDR/PATMOSX/V53提供了高质量的气候数据记录(CDR),以及高级甚高分辨率辐射计(AVHRR)的亮度温度和反射率的多种云特性
This dataset provides high quality Climate Data Record (CDR) of multiple cloud properties along with Advanced Very High Resolution Radiometer (AVHRR) brightness temperatures and reflectances. These data have been fitted to a 0.1 x 0.1 equal angle-grid with both ascending and descending assets generated daily from two to ten NOAA and MetOp satellite passes per day.
此星光明
2024/02/02
2280
Google Earth Engine——NOAA/CDR/PATMOSX/V53提供了高质量的气候数据记录(CDR),以及高级甚高分辨率辐射计(AVHRR)的亮度温度和反射率的多种云特性
Google Earth Engine ——MCD43A2 V6双向反射分布函数和反照率(BRDF/Albedo)质量500m数据集是一个500米的每日16天产品。包含质量信息!
The MCD43A2 V6 Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) Quality dataset is a 500 meter daily 16-day product. It contains all the quality information for the corresponding 16-day MCD43A3 Albedo and the MCD43A4 Nadir-BRDF (NBAR) products.
此星光明
2024/02/02
1970
Google Earth Engine ——MCD43A2 V6双向反射分布函数和反照率(BRDF/Albedo)质量500m数据集是一个500米的每日16天产品。包含质量信息!
Google Earth Engine——PROBA-V C1 Top Of Canopy Daily Synthesis 100m/333m数据集
Proba-V is a satellite mission tasked to map land cover and vegetation growth. It was designed to provide continuity for the VGT optical instrument from the SPOT-4 and SPOT-5 missions.
此星光明
2024/02/02
2110
Google Earth Engine——PROBA-V C1 Top Of Canopy Daily Synthesis 100m/333m数据集
Google Earth Engine ——LANDSAT8_SR数据集
This dataset is the atmospherically corrected surface reflectance from the Landsat 8 OLI/TIRS sensors. These images contain 5 visible and near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, and two thermal infrared (TIR) bands processed to orthorectified brightness temperature
此星光明
2024/02/02
3430
Google Earth Engine ——LANDSAT8_SR数据集
Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!
This dataset contains atmospherically corrected surface reflectance and land surface temperature derived from the data produced by the Landsat TM sensor. These images contain 4 visible and near-infrared (VNIR) bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface reflectance, and one thermal infrared (TIR) band processed to orthorectified surface temperature. They also contain intermediate bands used in calculation of the ST products, as well as QA bands.
此星光明
2024/02/02
3270
Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!
Google Earth Engine ——MYD11A2中的每个像素值是该8天内收集的所有相应的MOD11A1 LST像素的简单平均值1km分辨率
The MYD11A2 V6 product provides an average 8-day land surface temperature (LST) in a 1200 x 1200 kilometer grid. Each pixel value in MYD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected within that 8 day period. The 8 day compositing period was chosen because twice that period is the exact ground track repeat period of the Aqua and Aqua platforms. In this product, along with both the day- and night-time surface temperature bands and their quality indicator (QC) layers, are also MODIS bands 31 and 32 and eight observation layers.
此星光明
2024/02/02
2321
Google Earth Engine ——MYD11A2中的每个像素值是该8天内收集的所有相应的MOD11A1 LST像素的简单平均值1km分辨率
Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR表面反射率包含网格化的每日表面反射率和亮度温度,来自NOAA七颗极地轨道卫星上的高级甚高分辨率辐射计(AVHRR)
The NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance contains gridded daily surface reflectance and brightness temperatures derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard seven NOAA polar orbiting satellites. The data are gridded at a resolution of 0.05° and computed globally over land surfaces.
此星光明
2024/02/02
2490
Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR表面反射率包含网格化的每日表面反射率和亮度温度,来自NOAA七颗极地轨道卫星上的高级甚高分辨率辐射计(AVHRR)
Google Earth Engine——Proba-V数据集包含:土地覆盖和植被生长,该传感器收集三个VNIR(可见光和近红外)波段和一个SWIR(短波红外)波段的数据,视场为2250公里。
Proba-V is a satellite mission tasked to map land cover and vegetation growth. It was designed to provide continuity for the VGT optical instrument from the SPOT-4 and SPOT-5 missions.
此星光明
2024/02/02
2890
Google Earth Engine——Proba-V数据集包含:土地覆盖和植被生长,该传感器收集三个VNIR(可见光和近红外)波段和一个SWIR(短波红外)波段的数据,视场为2250公里。
Google Earth Engine ——MYD10A1 V6 Snow Cover Daily Global 500m产品包含雪盖、雪反照率、雪盖分率和质量评估(QA)数据归一化差异积雪指数数据集
The MYD10A1 V6 Snow Cover Daily Global 500m product contains snow cover, snow albedo, fractional snow cover, and quality assessment (QA) data. Snow cover data are based on a snow mapping algorithm that employs a Normalized Difference Snow Index (NDSI) and other criteria tests.
此星光明
2024/02/02
2100
Google Earth Engine ——MYD10A1 V6 Snow Cover Daily Global 500m产品包含雪盖、雪反照率、雪盖分率和质量评估(QA)数据归一化差异积雪指数数据集
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
This dataset provides near real-time high-resolution imagery of cloud parameters.
此星光明
2024/02/02
1940
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CO)实时的 CO 浓度高分辨率图像数据集
This dataset provides near real-time high-resolution imagery of CO concentrations.
此星光明
2024/05/24
1500
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CO)实时的 CO 浓度高分辨率图像数据集
Google Earth Engine ——比Landsat更全的NDVI数据NOAA CDR AVHRR NDVI)1981-2019年0.05 degrees数据集
The NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI) contains gridded daily NDVI derived from the NOAA AVHRR Surface Reflectance product. It provides a measurement of surface vegetation coverage activity, gridded at a resolution of 0.05° and computed globally over land surfaces.
此星光明
2024/02/02
2370
Google Earth Engine ——比Landsat更全的NDVI数据NOAA CDR AVHRR NDVI)1981-2019年0.05 degrees数据集
推荐阅读
Google Earth Engine ——MODOCGA V6海洋反射率产品由Terra MODIS 8-16波段的1公里反射率数据1km
1900
Google Earth Engine ——MYD09GA.006 Aqua 地表反射率 Daily Global 1km and 500m在没有大气散射或吸收的情况下在地
3170
Google Earth Engine ——MYD09Q1.006 Aqua 地表反射率 8-Day Global 250m提供了第1和第2波段的表面光谱反射率的估计,并对气体、气溶胶和瑞利散射等校正
2150
PIE-engine 教程 ——MODIS影像去云教程(山西省为例)
7200
Google Earth Engine ——MODIS/006/MYD09GQ表面反射率产品提供了在没有大气散射或吸收的情况下在地面测量的表面光谱反射率的估计。低层数据经过大气气体和气溶胶的校正。
2380
Google Earth Engine ——MYD13Q1.006 Aqua Vegetation Indices 16-Day Global 250m分辨率(NDVI/EVI)数据集
2050
Google Earth Engine ——MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250m归一化植被指数(NDVI)和增强植被指数EVI
2640
Google Earth Engine——VNP13算法过程产生三种植被指数。(1)归一化差异植被指数(NDVI),(2)增强植被指数(EVI),以及(3)增强植被指数-2(EVI2)。
3120
Google Earth Engine——NOAA/CDR/PATMOSX/V53提供了高质量的气候数据记录(CDR),以及高级甚高分辨率辐射计(AVHRR)的亮度温度和反射率的多种云特性
2280
Google Earth Engine ——MCD43A2 V6双向反射分布函数和反照率(BRDF/Albedo)质量500m数据集是一个500米的每日16天产品。包含质量信息!
1970
Google Earth Engine——PROBA-V C1 Top Of Canopy Daily Synthesis 100m/333m数据集
2110
Google Earth Engine ——LANDSAT8_SR数据集
3430
Google Earth Engine ——LANDSAT/LT04/C02/T1系列数据介绍!
3270
Google Earth Engine ——MYD11A2中的每个像素值是该8天内收集的所有相应的MOD11A1 LST像素的简单平均值1km分辨率
2321
Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR表面反射率包含网格化的每日表面反射率和亮度温度,来自NOAA七颗极地轨道卫星上的高级甚高分辨率辐射计(AVHRR)
2490
Google Earth Engine——Proba-V数据集包含:土地覆盖和植被生长,该传感器收集三个VNIR(可见光和近红外)波段和一个SWIR(短波红外)波段的数据,视场为2250公里。
2890
Google Earth Engine ——MYD10A1 V6 Snow Cover Daily Global 500m产品包含雪盖、雪反照率、雪盖分率和质量评估(QA)数据归一化差异积雪指数数据集
2100
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
1940
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CO)实时的 CO 浓度高分辨率图像数据集
1500
Google Earth Engine ——比Landsat更全的NDVI数据NOAA CDR AVHRR NDVI)1981-2019年0.05 degrees数据集
2370
相关推荐
Google Earth Engine ——MODOCGA V6海洋反射率产品由Terra MODIS 8-16波段的1公里反射率数据1km
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验