Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >图解数据分析 | 数据分析思维

图解数据分析 | 数据分析思维

原创
作者头像
ShowMeAI
发布于 2022-02-24 12:33:17
发布于 2022-02-24 12:33:17
1.5K0
举报
文章被收录于专栏:ShowMeAI研究中心ShowMeAI研究中心

作者:韩信子@ShowMeAI

教程地址http://www.showmeai.tech/tutorials/33

本文地址http://www.showmeai.tech/article-detail/135

声明:版权所有,转载请联系平台与作者并注明出处

有人把数据分析的核心总结为六字,即对比、细分、溯源,也被数据分析的三板斧,支撑数据分析的核心应用,具体来说:

数据分析三板斧
数据分析三板斧

对比:成对地比较。

  • 横向对比:与『他人』比较,比如,两家公司的离职率。
  • 纵向对比:按照时间维度与『自己』的比较,比如,一家公司去年和今年的离职率。

细分:对数据增加维度、降低粒度地分析。

  • 分维度:增加维度,比如,离职率按照部门维度来分析。
  • 降低粒度:降低数据聚合的程度,比如,离职率不按年份、而按照月份来统计。

溯源:在对比、细分锁定到具体维度和粒度之后,依然没有结论,那就需要查看原始数据,洞察数据,从数据中寻找灵感。

一、数据『对比』

数据放在那里是没有意义的,只有将数据进行比较,才体现出数据分析的价值。对比其实很简单,就是把A和B比较。但是,没有可对比性的对比一定是耍流氓。

数据分析思维-数据『对比』
数据分析思维-数据『对比』

1.1 指标的可对比性

指标的可对比性,可以从四个“一致”原则来评估:对象一致、时间属性一致、定义与算法一致、数据源一致。

(1)比价对象一致

比较的对象一致。对象一致是可比的最基本原则,番茄的销量和猪的销量是不可比的,这其实就是因为比较的对象不一致。

(2)时间属性一致

指标的时间属性一致。 时间属性比较特殊,对象所在的季节、月份等时间属性要有可比性。例如,一家便利店冬季雪糕的销量,和夏季没有可比性,因为对象的时间属性不同,但做销量的同比是可以的。

(3)定义和算法一致

对分析对象的定义和计算方法一致。举个例子,青年的定义,中国国家统计局(15-34周岁)和中国共青团(14-28周岁)不同,当统计青年人数占总人数的比例时,二者计算的指标数据,肯定是不同的。

(4)数据源一致

统计的数据样本一致。

1.2 数据对比的“三要”

在做数据对比的相关分析时,要记住三个“要”:对比要可比、差异要显著、描述要全面。

(1)对比要可比

对比分析要有可比性。

(2)差异要显著

组间差异要显著,组内差异要细微。常用的显著性检验有T检验和方差分析。

(3)描述要全面

当刻画一组数据时,不仅要描述这组数据的一般水平(均值),还要考虑到这组数据的波动水平。如果波动很大,一般水平对数据总体的代表性就会很差。只考虑一般水平而不考虑波动和差异,会使数据的可信度大大缩水。

二、数据『细分』

通过增加维度和降低粒度来细分数据,深挖数据,揭示数据中潜藏的规律。

数据分析思维-数据『细分』
数据分析思维-数据『细分』

2.1 增加维度

一个维度是数据表的一列。通常情况下,维度是指定性数据。例如,产品提供的服务的类型、用户分布的地域等。在分析数据时,增加分析的维度,改变看待问题的视角,能够在更细分的级别上分析数据,洞察到更多的知识,增加数据分析的深度。

例如,新用户的留存率,通过增加获客来源的维度,可以监控各个来源的新用户的留存率,把有限的经费使用到真正可以带来有效转化的地方。

2.2 降低粒度

粒度是数据的聚合程度。颗粒度最小的数据,是没有聚合的原始数据。

举个例子,每日数据是原始数据,其粒度是日,数据的数量巨大;而每周的统计数据是对日数据的聚合,其粒度是周,数据的数量变成原来的1/7。

三、数据『溯源』

溯源,就是到细节数据中去,查看原始数据,反思用户的行为。在做数据分析时,一定要明白你分析得数据是二手的,还是一手的。

数据分析思维-数据『溯源』
数据分析思维-数据『溯源』
  • 一手数据是最原始的数据,包含的内容最丰富,但数据可能不规范。
  • 二手数据是经过处理的,甚至是分析之后的数据,这些数据可能是片面的、阉割的、面向特定主题的,由此得出的分析结果也可能有失公允。

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的github中下载,可本地python环境运行,能访问国外网站的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本系列教程涉及的速查表可以在以下地址下载获取:

拓展参考资料

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
图解数据分析 | 业务分析与数据挖掘
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
1.1K0
图解数据分析 | 业务分析与数据挖掘
精准营销!用机器学习完成客户分群!⛵
我们总会听到很多公司的技术人员在做用户画像的工作,细分客户/客户分群是一个很有意义的工作,可以确保企业构建更个性化的消费者针对策略,同时优化产品和服务。
ShowMeAI
2022/11/10
1.5K0
精准营销!用机器学习完成客户分群!⛵
求职指南!给数据开发的SQL面试准备路径!⛵
大量的数据科学职位需要精通 SQL,它也是数据分析师、数据科学家、数据建模岗最常考核的面试技能。在本篇内容中 ShowMeAI 将梳理汇总所有面试 SQL 问题,按照不同的主题构建练习专项块,要求职的同学们可以按照对应板块内容进行专项击破与复习。
ShowMeAI
2022/11/30
4.2K1
求职指南!给数据开发的SQL面试准备路径!⛵
Pandas中你一定要掌握的时间序列相关高级功能 ⛵
Pandas 是大家都非常熟悉的数据分析与处理工具库,对于结构化的业务数据,它能很方便地进行各种数据分析和数据操作。但我们的数据中,经常会存在对应时间的字段,很多业务数据也是时间序组织,很多时候我们不可避免地需要和时间序列数据打交道。其实 Pandas 中有非常好的时间序列处理方法,但是因为使用并不特别多,很多基础教程也会略过这一部分。
ShowMeAI
2022/11/28
1.8K0
Pandas中你一定要掌握的时间序列相关高级功能 ⛵
Python数据分析 | Pandas核心操作函数大全
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
3.4K0
Python数据分析 | Pandas核心操作函数大全
Python数据分析 | Numpy与高维数组操作
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
1.3K0
Python数据分析 | Numpy与高维数组操作
刘畊宏男孩女孩看过来!运动数据分析挖掘!⛵
因为疫情,2年多的时间里,大家多了很多居家的经历,但是运动健康并不能因为居家而停止,健身随时随处可以进行!健身环大冒险等大热,而前阵子的刘畊宏跳操,带火了一大票畊宏男孩女孩,可穿戴设备市场大涨,而这些设备也记录了大量的运动数据。
ShowMeAI
2022/08/09
6510
刘畊宏男孩女孩看过来!运动数据分析挖掘!⛵
大数据开发!Pandas转spark无痛指南!⛵
Pandas 是每位数据科学家和 Python 数据分析师都熟悉的工具库,它灵活且强大具备丰富的功能,但在处理大型数据集时,它是非常受限的。
ShowMeAI
2022/11/24
8.5K0
大数据开发!Pandas转spark无痛指南!⛵
图解数据分析 | 数据分析介绍
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
1.2K0
图解数据分析 | 数据分析介绍
Python数据分析 | Pandas数据分组与操作
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
3K0
Python数据分析 | Pandas数据分组与操作
业务数据分析最佳案例!旅游业数据分析!⛵
在本篇内容中,ShowMeAI将带大家对旅游业,主要是酒店预订需求进行分析,我们使用到的数据集包含城市酒店和度假酒店的预订信息,包括预订时间、住宿时长、客人入住的周末或工作日晚数以及可用停车位数量等信息。
ShowMeAI
2022/11/27
1.6K0
业务数据分析最佳案例!旅游业数据分析!⛵
图解数据分析 | 业务认知与数据初探
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
5690
图解数据分析 | 业务认知与数据初探
Python数据分析 | 统计与科学计算工具库Numpy介绍
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
7850
Python数据分析 | 统计与科学计算工具库Numpy介绍
图解数据分析 | 数据分析的数学基础
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
2K0
图解数据分析 | 数据分析的数学基础
一种高效且通用的数据分析思维
很多旁友在刚接触数据分析的时候,缺乏数据思维的支持,做起分析来感觉找不准方向,很难通过分析挖掘出数据的价值。因此,我今天给刚入行的新人们分享一种通用的数据分析思维,在很多种分析场景都可以借鉴使用。
朱小五
2020/02/20
5390
一种高效且通用的数据分析思维
Python数据分析 | Numpy与1维数组操作
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
9800
Python数据分析 | Numpy与1维数组操作
精准用户画像!商城用户分群2.0!⛵
很多公司的技术人员在做用户画像的工作,细分客户/客户分群是一个很有意义的工作,可以确保企业构建更个性化的消费者针对策略,同时优化产品和服务。
ShowMeAI
2022/11/20
6970
精准用户画像!商城用户分群2.0!⛵
数据分析大作战,SQL V.S. Python,来看看这些考题你都会吗 ⛵
SQL与Pandas都可以完成大部分数据分析需求。本文用SQL与Pands逐一实现10类核心数据分析需求,轻松进行对比学习:数据选择、限制、统计计数、排序、新字段生成、数据选择、数据分组、统计均值、方差、极差/范围。
ShowMeAI
2022/08/26
3540
数据分析大作战,SQL V.S. Python,来看看这些考题你都会吗 ⛵
图解python | 循环与控制
教程地址:http://www.showmeai.tech/tutorials/56
ShowMeAI
2022/02/22
5710
图解python | 循环与控制
Python数据分析 | Pandas数据变换高级函数
教程地址:http://www.showmeai.tech/tutorials/33
ShowMeAI
2022/02/25
1.4K0
Python数据分析 | Pandas数据变换高级函数
推荐阅读
相关推荐
图解数据分析 | 业务分析与数据挖掘
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档