前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >用人工智能打王者荣耀,应该选择什么样的英雄?

用人工智能打王者荣耀,应该选择什么样的英雄?

作者头像
IT派
发布于 2018-07-30 06:15:44
发布于 2018-07-30 06:15:44
5070
举报
文章被收录于专栏:IT派IT派

如果让人工智能来打王者荣耀,应该选择什么样的英雄?近日,匹茨堡大学和腾讯 AI Lab 提交的论文给了我们答案:狄仁杰。在该研究中,人们尝试了 AlphaGo Zero 中出现的蒙特卡洛树搜索(MCTS)等技术,并取得了不错的效果。

对于研究者而言,游戏是完美的 AI 训练环境,教会人工智能打各种电子游戏一直是很多人努力的目标。在开发 AlphaGo 并在围棋上战胜人类顶尖选手之后,DeepMind 正与暴雪合作开展星际争霸 2 的人工智能研究。去年 8 月,OpenAI 的人工智能也曾在 Dota 2 上用人工智能打败了职业玩家。那么手机上流行的多人在线战术竞技游戏(MOBA 游戏)《王者荣耀》呢?腾讯 AI Lab 自去年起一直在向外界透露正在进行这样的研究。最近,匹茨堡大学、腾讯 AI Lab 等机构提交到 ICML 2018 大会的一篇论文揭开了王者荣耀 AI 研究的面纱。

本文中,我们将通过论文简要介绍该研究背后的技术,以及人工智能在王者荣耀中目前的能力。

2006 年 Remi Coulom 首次介绍了蒙特卡洛树搜索(MCTS),2012 年 Browne 等人在论文中对其进行了详细介绍。近年来 MCTS 因其在游戏 AI 领域的成功引起了广泛关注,在 AlphaGo 出现时关注度到达顶峰(Silver et al., 2016)。假设给出初始状态(或决策树的根节点),那么 MCTS 致力于迭代地构建与给定马尔可夫决策过程(MDP)相关的决策树,以便注意力被集中在状态空间的「重要」区域。MCTS 背后的概念是如果给出大概的状态或动作值估计,则只需要在具备高估计值的状态和动作方向扩展决策树。为此,MCTS 在树到达一定深度时,利用子节点鉴别器(策略函数(Chaslot et al., 2006)rollout、价值函数评估(Campbell et al., 2002; Enzenberger, 2004),或二者的混合(Silver et al., 2016))的指引,生成对下游值的估计。然后将来自子节点的信息反向传播回树。

MCTS 的性能严重依赖策略/值逼近结果的质量(Gelly & Silver, 2007),同时 MCTS 在围棋领域的成功表明它改善了用于子节点鉴别的给定策略,事实上,这可以被看作是策略改进算子(Silver et al., 2017)。匹茨堡大学、腾讯 AI Lab 等机构的研究者们新发表的论文研究了一种基于反馈的新型框架,其中 MCTS 利用根节点生成的观测结果更新其子节点鉴别器。

MCTS 通常被视为一种在线规划器,决策树以当前状态作为根节点开始构建(Chaslot et al., 2006; 2008; Hingston & Masek, 2007; Maˆıtrepierre et al., 2008; Cazenave, 2009; Mehat & ´ Cazenave, 2010; Gelly & Silver, 2011; Gelly et al., 2012; Silver et al., 2016)。MCTS 的标准目标是仅为根节点推荐动作。在采取动作之后,系统向前移动,然后从下一个状态中创建一棵新的树(旧树的数据可能会部分保存或完全丢弃)。因此 MCTS 是一个「局部」的步骤(因为它仅返回给定状态的动作),与构建「全局」策略的价值函数逼近或策略函数逼近方法存在本质区别。在实时决策应用中,构建足够的「运行中」(on-the-fly)局部逼近比在决策的短期时间内使用预训练全局策略更难。对于国际象棋或围棋等游戏而言,使用 MCTS 的在线规划可能是合适的,但是在需要快速决策的游戏中(如 Atari 或 MOBA 视频游戏),树搜索方法就太慢了(Guo et al., 2014)。本论文提出的算法可以离策略的方式在强化学习训练阶段中使用。训练完成后,与子节点鉴别有关联的策略可以实现,以进行快速、实时的决策,而无需树搜索。

主要贡献

MCTS 的这些特性推动了研究者们提出一种新方法,在训练步骤中利用 MCTS 的局部特性,来迭代地构建适应所有状态的全局策略。思路是在原始 infinite-horizon MDP 的多批小型 finite-horizon 版本上应用 MCTS。大致如下:(1)初始化随机价值函数和策略函数;(2)开始(可能是并行处理)处理一批 MCTS 实例(限制在搜索深度内,从采样状态集合中初始化而得),同时将价值函数和策略函数整合为子节点鉴别器;(3)使用最近的 MCTS 根节点观测结果更新价值函数和策略函数;(4)从第(2)步开始重复步骤。该方法利用 MCTS 策略优于单独的子节点鉴别器策略(Silver et al., 2016),同时改进子节点鉴别器也会改善 MCTS 的质量(Gelly & Silver, 2007)。

研究者称,新论文的主要贡献如下:

  1. 提出了一个基于批量 MCTS 的强化学习方法,其在连续状态、有限动作 MDP 上运行,且利用了子节点鉴别器可以通过之前的树搜索结果进行更新来生成更强大的树搜索。函数逼近器用于追踪策略和价值函数逼近,后者用于减少树搜索 rollout 的长度(通常,策略的 rollout 变成了复杂环境中的计算瓶颈)。
  2. 提供对该方法的完整样本复杂度分析,表明足够大的样本规模和充分的树搜索可以使估计策略的性能接近最优,除了一些不可避免的逼近误差。根据作者的认知,基于批量 MCTS 的强化学习方法还没有理论分析。
  3. 基于反馈的树搜索算法的深度神经网络实现在近期流行的 MOBA 游戏《王者荣耀》上进行了测试。结果表明 AI 智能体在 1v1 游戏模式中很有竞争力。

图 1. 基于反馈的树搜索算法。

图 2. 反馈循环图示。

案例分析:《王者荣耀》MOBA 游戏 AI

研究者在全新的、有挑战性的环境:《王者荣耀》游戏中实现了基于反馈的树搜索算法。该实现是第一次为该游戏 1v1 模式设计 AI 的尝试。

游戏介绍

在《王者荣耀》中,玩家被分为对立的两队,每一队有一个基地,分别在游戏地图的相反角落(与其他 MOBA 游戏类似,如英雄联盟和 Dota 2)。每条线上有防御塔来防御,它可以攻击在一定范围内的敌人。每支队伍的目标是推塔并最终摧毁对方的水晶。本论文仅考虑 1v1 模式,该模式中每个玩家控制一个「英雄」,还有一些稍微弱一点的游戏控制的「小兵」。小兵负责守卫通往水晶的路,并自动攻击范围内的敌人(其攻击力较弱)。图 4 显示了两个英雄和他们的小兵,左上角是地图,蓝色和红色标记表示塔和水晶。

图 4.《王者荣耀》1v1 游戏模式截图。

实验设置

系统的状态变量是一个 41 维的向量,包含直接从游戏引擎获取的信息,包括英雄位置、英雄健康度(血量)、小兵健康度、英雄技能状态和不同结构的相对位置。有 22 个动作,包括移动、攻击、治疗术(heal)和特殊的技能动作,包括(扇形)非指向技能。奖励函数的目标是模仿奖励形态(reward shaping),使用信号组合(包括健康、技能、伤害和靠近水晶的程度)。研究者训练了五个《王者荣耀》智能体,使用的英雄是狄仁杰:

  1. FBTS 智能体使用基于反馈的树搜索算法进行训练,一共迭代 7 次,每次进行 50 局游戏。搜索深度 d = 7,rollout 长度 h = 5。每次调用 MCTS 运行 400 次迭代。
  2. 第二个智能体因为没有 rollout 被标注为「NR」。它使用和 FBTS 智能体相同的参数,除了未使用 rollout。总体来看,它在批量设置上与 AlphaGo Zero 算法有些相似。
  3. DPI 智能体使用 Lazaric et al., 2016 的直接策略迭代技术,进行 K = 10 次迭代。没有价值函数和树搜索(因为计算限制,不使用树搜索就可能进行更多次迭代)。
  4. AVI 智能体实现近似价值迭代(De Farias & Van Roy, 2000; Van Roy, 2006; Munos, 2007; Munos & Szepesvari ´ , 2008),K = 10 次迭代。该算法可被认为是 DQN 的批量版本。
  5. 最后是 SL 智能体,它通过在大约 100,000 个人类玩游戏数据的状态/动作对数据集上进行监督学习来训练。值得注意的是,此处使用的策略架构与之前的智能体一致。

事实上,策略和价值函数近似在所有智能体中都是一样的,二者分别使用具备五个和两个隐藏层的全连接神经网络和 SELU(scaled exponential linear unit)激活函数(Klambauer et al., 2017)。初始策略 π0 采取随机动作:移动(w.p. 0.5)、直接攻击(w.p. 0.2)或特殊技能(w.p. 0.3)。除了将移动方向挪向奖励方向之外,π0 不使用其他启发式信息。MCTS 是 UCT 算法的变体,更适合处理并行模拟:研究者不使用 UCB 分数的 argmax,而是根据对 UCB 得分应用 softmax 函数所获得的分布进行动作采样。

与理论不同,在算法的实际实现中,回归使用 cosine proximity loss,而分类使用负对数似然损失。由于在该游戏环境中我们无法「倒带」或「快进」至任意状态,因此采样分布 ρ0 由第一次采取的随机动作(随机的步数)来实现并到达初始状态,然后遵循策略 πk 直到游戏结束。为了减少价值逼近中的相关性,研究者丢弃了在这些轨迹中遇到的 2/3 的状态。对于 ρ1,研究者遵循 MCTS 策略,偶尔带入噪声(以随机动作和随机转向默认策略的方式)来减少相关性。在 rollout 中,研究者使用游戏内部 AI 作为英雄狄仁杰的对手。

结果

由于该游戏几乎是确定性的,因此研究者的主要测试方法是对比智能体对抗内部 AI 对手的有效性。研究者还添加了游戏内建 AI 的狄仁杰作为「完整性检查」基线智能体。为了选择测试对手,研究者使用内建 AI 狄仁杰对抗其他内建 AI(即其他英雄)并选择六个内建 AI 狄仁杰能够打败的射手类英雄。研究者的智能体每一个都包含内建狄仁杰 AI,使用智能体对抗测试对手。图 5 显示了每个智能体打败测试对手的时间长度(单位为帧)(如果对手赢了,则显示为 20,000 帧)。在与这些共同对手的战斗中,FBTS 显著优于 DPI、AVI、SL 和游戏内建 AI。但是,FBTS 仅稍微超出 NR 的表现(这并不令人惊讶,因为 NR 是另外一个也使用 MCTS 的智能体)。研究者的第二组结果帮助可视化了 FBTS 和四个基线的对决(全部都是 FBTS 获胜):图 6 显示了 FBTS 智能体及其对手的金币比例,横轴为时间。王者荣耀游戏中英雄对敌人造成伤害或者战胜敌人时,都会得到金币,因此金币比例大于 1.0(高出红色区域)表示 FBTS 的良好性能。如图所示,每个游戏结束时 FBTS 的金币比例都在 [1.25, 1.75] 区间内。

图 5. 几种智能体战胜其他射手英雄所用时间(以帧为单位,即帧的数量),数字越小越好。其中 FBTS 为新研究提出的智能体。

图 6. 游戏内行为。

论文:Feedback-Based Tree Search for Reinforcement Learning

论文链接:https://arxiv.org/abs/1805.05935

摘要:蒙特卡洛树搜索(MCTS)已在多个人工智能领域取得了成功,受此启发我们提出了一种基于模型的强化学习技术,可以在原始 infinite-horizon 马尔可夫决策过程的多批小型 finite-horizon 版本上迭代使用 MCTS。我们使用估计值函数和估计策略函数指定 finite-horizon 问题的终止条件或 MCTS 所生成决策树的子节点鉴别器。MCTS 步骤生成的推荐结果作为反馈,通过分类和回归来为下一次迭代细化子节点鉴别器。我们为基于树搜索的强化学习算法提供第一个样本复杂度界限。此外,我们还证明该技术的深度神经网络实现可以创建一个适合《王者荣耀》游戏的有竞争力的 AI 智能体。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-05-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 IT派 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
腾讯AI×王者荣耀「绝悟」项目首亮相:KPL秋季决赛击败顶尖战队
据机器之心了解,这是腾讯 AI Lab 与王者荣耀共同探索的研究项目——策略协作型 AI「绝悟」首次露面,并于昨天在KPL秋季决赛接受前职业 KPL 选手辰鬼、零度和职业解说白乐、九天和立人组成的人类战队(平均水平超过 99% 玩家)的水平测试。最终 AI 战队获得胜利。这是继围棋 AI「绝艺」后,腾讯 AI 在深度学习与强化学习领域的又一项前沿研究。
机器之心
2019/01/02
1.6K0
王者荣耀AI绝悟如何选英雄?腾讯AI Lab新研究揭秘
腾讯 AI Lab 开发的 AI 智能体「绝悟」已让王者峡谷不再只是人类召唤师的竞技场,而且这个 AI 战队在上月底进化成了「完全体」。在一局完整的比赛中,英雄选择阶段是至关重要的(比如五射手或五法师阵容会有官方劝退)。
磐创AI
2021/01/12
7950
王者荣耀AI绝悟如何选英雄?腾讯AI Lab新研究揭秘
不服SOLO:腾讯绝悟AI击败王者荣耀顶尖职业玩家,论文入选AAAI,未来将开源
围棋被攻克之后,多人在线战术竞技游戏(MOBA)已经成为测试检验前沿人工智能的动作决策和预测能力的重要平台。基于腾讯天美工作室开发的热门 MOBA 类手游《王者荣耀》,腾讯 AI Lab 正努力探索强化学习技术在复杂环境中的应用潜力。本文即是其中的一项成果,研究用深度强化学习来为智能体预测游戏动作的方法,该论文已被 AAAI-2020 接收。
机器之心
2019/12/25
1.3K0
不服SOLO:腾讯绝悟AI击败王者荣耀顶尖职业玩家,论文入选AAAI,未来将开源
挑战王者荣耀人工智能绝悟,我和 AI「55 开」
在 AI 破解围棋难题之后,电子竞技类游戏成为测试和检验前沿人工智能的复杂决策、行动、协作与预测能力的重要平台。国外有刀塔 2 AI 项目 OpenAI Five、星际争霸 2 研究 AlphaStar,国内有腾讯 AI Lab 携手王者荣耀展开绝悟 AI 的研究。
机器之心
2020/05/19
7090
挑战王者荣耀人工智能绝悟,我和 AI「55 开」
腾讯AI大战王者荣耀!504场1v1仅输1场,5v5达电竞职业水平
8月3日,腾讯策略协作型 AI “绝悟”再出山,对战王者荣耀职业玩家,胜率相当惊人。
小小詹同学
2019/08/23
6920
腾讯AI大战王者荣耀!504场1v1仅输1场,5v5达电竞职业水平
王者荣耀「绝悟」完全体上线:解禁全英雄,在线约你来战
木易 发自 凹非寺  量子位 报道 | 公众号 QbitAI 腾讯AI Lab与王者荣耀联合研发的策略协作型 AI「绝悟」,全英雄池解禁,升级成「完全体」了。 11月28日到30日,将限时开放三天公众体验。 这次的升级,带来了新算法,除了突破了可用英雄限制,还优化了禁选英雄博弈策略。 而与此次升级相关的研究,也在近期被NeurIPS 2020和TNNLS分别收录。 在这两篇研究中,分别介绍了「绝悟」进行强化训练和监督训练具体细节。 那么,「完全体绝悟」是如何训练出来的呢? 就让我们顺着这次的论文,好好来了
量子位
2023/03/10
3270
王者荣耀「绝悟」完全体上线:解禁全英雄,在线约你来战
让AI学会打王者,有什么用?
作为目前全球最负盛名的人工智能盛会之一,NeurIPS在每年年末都是计算机科学领域瞩目的焦点。被NeurIPS接收的论文,代表着当今神经科学和人工智能研究的最高水平,也反映着行业趋势的变化。
新智元
2023/01/08
4620
让AI学会打王者,有什么用?
Dota之后,《王者荣耀》也被AI攻陷,势把人类顶级玩家拉下马
19日,腾讯AI Lab团队在arXiv上发表文章,训练AI大战人类玩家,而此次所选择的游戏,正是火遍大江南北的手游——《王者荣耀》。
昱良
2018/12/28
6130
腾讯 AI「绝悟」KPL 击败职业玩家联队,晋升王者荣耀电竞职业水平
「绝悟」是腾讯 AI Lab 与王者荣耀团队共同探索的前沿研究项目,在王者荣耀世界冠军杯半决赛的特设环节中,这一人工智能在职业选手赛区联队带来的 5v5 水平测试中获胜,首次在王者荣耀游戏中击败了现役职业玩家。
机器之心
2019/08/05
2K0
腾讯 AI「绝悟」KPL 击败职业玩家联队,晋升王者荣耀电竞职业水平
中科大吴锋:多智能体的分布式在线决策 | 腾讯AI Lab学术论坛演讲
本文转载自:腾讯AI实验室 本文第一部分是中国科学技术大学计算机科学与技术学院副教授吴锋带来的主题演讲,第二部分介绍了腾讯AI Lab在AI研究到应用的布局中,在「AI+游戏」方向的挑战与应对的分析。 3月15日,腾讯AI Lab第二届学术论坛在深圳举行,聚焦人工智能在医疗、游戏、多媒体内容、人机交互等四大领域的跨界研究与应用。全球30位顶级AI专家出席,对多项前沿研究成果进行了深入探讨与交流。腾讯AI Lab还宣布了2018三大核心战略,以及同顶级研究与出版机构自然科研的战略合作(点击 这里 查看详情)。
腾讯高校合作
2018/06/04
1.9K0
人工智能当前,棋牌游戏留给人类的堡垒不多了
本文介绍了人工智能在棋类游戏中的一些进展,特别是在围棋和德州扑克这两个领域。作者分析了AlphaGo和Libratus等人工智能系统,并讨论了这些技术在未来的可能发展方向。
AlgorithmDog
2017/12/29
2.2K0
人工智能当前,棋牌游戏留给人类的堡垒不多了
腾讯绝悟AI完全体限时开放体验,研究登上国际顶会与顶刊
感谢阅读腾讯AI Lab微信号第112篇文章。本文将介绍绝悟 AI 完全体升级版本的技术方法,也欢迎读者到王者荣耀 app 亲身体验其技术实力。 腾讯 AI Lab 宣布与王者荣耀联合研发的策略协作型 AI“绝悟”推出升级版本。 创新算法突破了可用英雄限制(英雄池数量从40增为100+),让 AI 完全掌握所有英雄的所有技能,能应对高达10的15次方的英雄组合数变化; 优化了禁选英雄(BanPick,简称BP)博弈策略,能综合自身技能与对手情况等多重因素派出最优英雄组合。 相关研究已被 AI 顶级会议 N
腾讯技术工程官方号
2020/12/01
1.5K0
我玩《王者荣耀》、斗地主、打麻将,但我是正经搞AI的北大教授
金磊 梦晨 发自 凹非寺 量子位 报道 | 公众号 QbitAI 一位导师下载好了《王者荣耀》,还鼓励她的博士生们去玩一玩。 真的很难想象,这种“名场面”就真真儿的发生在了国内顶级学府——北京大学。 …… 这位导师叫李文新,是北大信息科学技术学院的一名教授。 △ 李文新教授 但她和学生们打《王者荣耀》可是真的正儿八经的,因为李文新的研究方向,正是游戏AI: 其实“游戏”这个词,并不应该是刻板印象中的手游、端游等等,我们对它的理解是更泛化的。 “游戏”是对“现实”的抽象和模仿。我们期望在游戏中获得与现实
量子位
2023/03/01
5020
我玩《王者荣耀》、斗地主、打麻将,但我是正经搞AI的北大教授
打王者荣耀,发NeurIPS!
本研究类似建了一个"王者荣耀实战题库" + "考试评分系统" + "新解题方法"。
Datawhale
2025/03/24
930
打王者荣耀,发NeurIPS!
王者荣耀的B面:人类在此喧闹,AI却在他们脚下悟道
浅友们好~我是史中,我的日常生活是开撩五湖四海的科技大牛,我会尝试各种姿势,把他们的无边脑洞和温情故事讲给你听。如果你想和我做朋友,不妨加微信(shizhongmax)。
浅黑科技
2022/11/11
9910
王者荣耀的B面:人类在此喧闹,AI却在他们脚下悟道
我和AI打了六局王者荣耀,心态崩了
PVP对战手游王者荣耀在五一节期间上线了一种新玩法——挑战 · 绝悟,也就是5人组队和5个AI对战。
量子位
2020/05/19
4570
我和AI打了六局王者荣耀,心态崩了
组合游戏系列4: AlphaGo Zero 强化学习算法原理深度分析
AlphaGo Zero是Deepmind 最后一代AI围棋算法,因为已经达到了棋类游戏AI的终极目的:给定任何游戏规则,AI从零出发只通过自我对弈的方式提高,最终可以取得超越任何对手(包括顶级人类棋手和上一代AlphaGo)的能力。换种方式说,当给定足够多的时间和计算资源,可以取得无限逼近游戏真实解的能力。这一篇,我们深入分析AlphaGo Zero的设计理念和关键组件的细节并解释组件之间的关联。下一篇中,我们将在已有的N子棋OpenAI Gym 环境中用Pytorch实现一个简化版的AlphaGo Zero算法。
CreateAMind
2020/10/22
1.7K0
组合游戏系列4: AlphaGo Zero 强化学习算法原理深度分析
腾讯王者荣耀AI论文首次曝光:五AI王者局开黑与人类战队打成平手
腾讯刚刚发布的一篇论文显示,王者荣耀AI在不声不响间,又掌握了新的技能:组团开黑。而且战绩不俗。
量子位
2018/12/28
9130
20+顶尖高校同时开打《王者荣耀》!实际上是一场科研battle,你能信?
金磊 假装发自 王者峡谷 量子位 报道 | 公众号 QbitAI 不是吧,不是吧。 一群学霸聚集在一起,竟然是为了打《王者荣耀》?! 而且还是来自清北、中科院、浙大等20余所顶级学府的那种。 但毕竟是一帮学霸们的“聚会”,果然连打游戏的“姿势”都那么与众不同: 他们竟然要用《王者荣耀》搞科研! (妥妥的是有种诸葛亮“黄金分割率”的味道了。) 这到底是怎么一回事? 在《王者荣耀》里搞科研 要想搞清楚这件事,就需要先来颠覆一下你对《王者荣耀》的认知。 友友们,其实它不单单是一款游戏那么简单: 还是一个极
量子位
2023/03/01
3450
20+顶尖高校同时开打《王者荣耀》!实际上是一场科研battle,你能信?
ICML 2018 | 腾讯AI Lab详解16篇入选论文
导读:7月10日至15日,第 35 届国际机器学习会议(ICML 2018)将在瑞典斯德哥尔摩举行。ICML是机器学习领域最顶级的学术会议,今年共收到2473篇投递论文,比去年的1676篇提高47.6%,增幅显著。最终入围论文共621篇,接收率25%,与去年26%持平。 这是腾讯AI Lab第二次参与这一顶级会议,共有16篇论文入选,去年则入选4篇,均位居国内企业前列。我们将在下文中分三类介绍这些文章——新模型与新框架、分布式与去中心化、及机器学习优化方法与理论研究。有的研究具有多重贡献,并不严格按照研究
腾讯技术工程官方号
2018/07/10
11.1K0
推荐阅读
腾讯AI×王者荣耀「绝悟」项目首亮相:KPL秋季决赛击败顶尖战队
1.6K0
王者荣耀AI绝悟如何选英雄?腾讯AI Lab新研究揭秘
7950
不服SOLO:腾讯绝悟AI击败王者荣耀顶尖职业玩家,论文入选AAAI,未来将开源
1.3K0
挑战王者荣耀人工智能绝悟,我和 AI「55 开」
7090
腾讯AI大战王者荣耀!504场1v1仅输1场,5v5达电竞职业水平
6920
王者荣耀「绝悟」完全体上线:解禁全英雄,在线约你来战
3270
让AI学会打王者,有什么用?
4620
Dota之后,《王者荣耀》也被AI攻陷,势把人类顶级玩家拉下马
6130
腾讯 AI「绝悟」KPL 击败职业玩家联队,晋升王者荣耀电竞职业水平
2K0
中科大吴锋:多智能体的分布式在线决策 | 腾讯AI Lab学术论坛演讲
1.9K0
人工智能当前,棋牌游戏留给人类的堡垒不多了
2.2K0
腾讯绝悟AI完全体限时开放体验,研究登上国际顶会与顶刊
1.5K0
我玩《王者荣耀》、斗地主、打麻将,但我是正经搞AI的北大教授
5020
打王者荣耀,发NeurIPS!
930
王者荣耀的B面:人类在此喧闹,AI却在他们脚下悟道
9910
我和AI打了六局王者荣耀,心态崩了
4570
组合游戏系列4: AlphaGo Zero 强化学习算法原理深度分析
1.7K0
腾讯王者荣耀AI论文首次曝光:五AI王者局开黑与人类战队打成平手
9130
20+顶尖高校同时开打《王者荣耀》!实际上是一场科研battle,你能信?
3450
ICML 2018 | 腾讯AI Lab详解16篇入选论文
11.1K0
相关推荐
腾讯AI×王者荣耀「绝悟」项目首亮相:KPL秋季决赛击败顶尖战队
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文