前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Hbase源码系列之BufferedMutator的Demo和源码解析

Hbase源码系列之BufferedMutator的Demo和源码解析

作者头像
Spark学习技巧
发布2018-01-30 18:20:48
4K0
发布2018-01-30 18:20:48
举报
文章被收录于专栏:Spark学习技巧

一,基本介绍

BufferedMutator主要用来异步批量的将数据写入一个hbase表,就像Htable一样。通过Connection获取一个实例。Map/reduce 任务是BufferedMutator的好的使用案例。Map/Reduce任务获益于batch操作,但是没有留出flush接口。BufferedMutator从Map/Reduce任务接受数据,会依据一些先验性的经验批量提交数据,比如puts堆积的数量,由于批量提交时异步的,所以M/R逻辑不会因为数据的batch提交而阻塞。Map/Reduce 批处理任务每个线程会有一个BufferedMutator。单个BufferedMutator也能够很高效用于大数据量的在线系统,来成批的写puts入hbase表。

二,使用demo

代码语言:js
复制
Configuration conf =  HBaseConfiguration.create();
 conf.set("hbase.zookeeper.quorum", "zookeeperHost");
final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {
@Override
public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) {
 for (int i = 0; i < e.getNumExceptions(); i++) {
        LOG.info("Failed to sent put " + e.getRow(i) + ".");              }
        }
        };
 BufferedMutatorParams params = new BufferedMutatorParams(TABLE)
        .listener(listener);
 params.writeBufferSize(123123L);
        try {
        Connection conn = ConnectionFactory.createConnection(conf);
 BufferedMutator mutator = conn.getBufferedMutator(params);
 Put p = new Put(Bytes.toBytes("someRow"));
 p.addColumn(FAMILY, Bytes.toBytes("someQualifier"), Bytes.toBytes("some value"));
 mutator.mutate(p);
 mutator.close();
 conn.close();
 } catch (IOException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 }

        }

三,源码介绍

1,主要类介绍

BufferedMutatorParams

实例化一个BufferedMutator所需要的参数。

主要参数TableName(表名),writeBufferSize(写缓存大小),maxKeyValueSize(最大key-value大小),ExecutorService(执行线程池),ExceptionListener(监听BufferedMutator的异常)。

BufferedMutatorImpl

用来和hbase表交互,类似于Htable,但是意味着批量,异步的puts。通过HConnectionImplementation获得实例,具体方法如下:

代码语言:js
复制
public BufferedMutator getBufferedMutator(BufferedMutatorParams params) {
 if (params.getTableName() == null) {
 throw new IllegalArgumentException("TableName cannot be null.");
 }
 if (params.getPool() == null) {
    params.pool(HTable.getDefaultExecutor(getConfiguration()));
 }
 if (params.getWriteBufferSize() == BufferedMutatorParams.UNSET) {
    params.writeBufferSize(connectionConfig.getWriteBufferSize());
 }
 if (params.getMaxKeyValueSize() == BufferedMutatorParams.UNSET) {
    params.maxKeyValueSize(connectionConfig.getMaxKeyValueSize());
 }
 return new BufferedMutatorImpl(this, rpcCallerFactory, rpcControllerFactory, params);
}

AsyncProcess

AsyncProcess内部维护的有一个线程池,我们的操作会被封装成runnable,然后扔到线程池里执行。这个过程是异步的,直到任务数达到最大值。

HConnectionImplementation

一个集群的链接。通过它可以找到master,定位到regions的分布,保持locations的缓存,并指导如何校准localtions信息。

2,源码过程

A),BufferedMutator构建的过程

1),首先是要构建一个HBaseConfiguration

Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "zookeeperHost");

2),接着是构建BufferedMutatorParams

代码语言:js
复制
final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {
 @Override
 public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) {
 for (int i = 0; i < e.getNumExceptions(); i++) {
 LOG.info("Failed to sent put " + e.getRow(i) + ".");
 }
  }
};
BufferedMutatorParams params = new BufferedMutatorParams(TABLE)
    .listener(listener);
params.writeBufferSize(123);

3),最后构建HConnection

Connection conn = ConnectionFactory.createConnection(getConf())

4),最后构建BufferMutator

BufferedMutator mutator = conn.getBufferedMutator(params)

B),数据发送的过程

1),构建put或者List[put]

2),调用BufferedMutator.mutate方法

3),刷写到hbase。

三种方法:

一是,显式调用BufferedMutator.flush

二是,发送结束的时候调用BufferedMutator.close

三是,它根据当前缓存大于了设置的写缓存大小

while (undealtMutationCount.get() != 0 && currentWriteBufferSize.get() > writeBufferSize) { backgroundFlushCommits(false); }

最终都是调用的backgroundFlushCommits方法。

4),rpc的过程

入口是backgroundFlushCommits方法。Ap是AsyncProcess的实例。

ap.submit(tableName, taker, true, null, false);

首先是构建了一个HashMap,可以通过server找到该server上我们需要的region

代码语言:js
复制
//可以根据我们的server找到要发送到该server的actions
Map<ServerName, MultiAction<Row>> actionsByServer =
 new HashMap<ServerName, MultiAction<Row>>();

获取所有的region信息,所有region的副本都被包括在内

代码语言:js
复制
RegionLocations locs = connection.locateRegion(
    tableName, r.getRow(), true, true, RegionReplicaUtil.DEFAULT_REPLICA_ID);

获取默认的region信息此时一个region只会返回一个默认id指定的位置。

代码语言:js
复制
loc = locs.getDefaultRegionLocation();

将row操作转变为action,并加入actionsByServer

代码语言:js
复制
//可以操作将row操作变为Action
Action<Row> action = new Action<Row>(r, ++posInList);
setNonce(ng, r, action);
retainedActions.add(action);
// TODO: replica-get is not supported on this path
byte[] regionName = loc.getRegionInfo().getRegionName();
addAction(loc.getServerName(), regionName, action, actionsByServer, nonceGroup);
it.remove();

接着是

AsyncProcess.submitMultiActions

AsyncRequestFutureImpl<CResult>

.sendMultiAction(actionsByServer, 1, null, false);

内部主要是根据server,获取MultiAction,然后构建Runnable

代码语言:js
复制
for (Map.Entry<ServerName, MultiAction<Row>> e : actionsByServer.entrySet()) {
  ServerName server = e.getKey();
 MultiAction<Row> multiAction = e.getValue();

 Collection<? extends Runnable> runnables = getNewMultiActionRunnable(server, multiAction,
 numAttempt);
 // make sure we correctly count the number of runnables before we try to reuse the send
  // thread, in case we had to split the request into different runnables because of backoff
 if (runnables.size() > actionsRemaining) {
    actionsRemaining = runnables.size();
 }

然后,遍历执行Runnable

代码语言:js
复制
for (Runnable runnable : runnables) {
 if ((--actionsRemaining == 0) && reuseThread
      && numAttempt % HConstants.DEFAULT_HBASE_CLIENT_RETRIES_NUMBER != 0) {
    runnable.run();
 } else {
 try {
 pool.submit(runnable);

5),Runnable的构建及Run方法

主要是进入getNewMultiActionRunnable

代码语言:js
复制
List<Runnable> toReturn = new ArrayList<Runnable>(actions.size());
for (DelayingRunner runner : actions.values()) {
  incTaskCounters(runner.getActions().getRegions(), server);
 String traceText = "AsyncProcess.sendMultiAction";
 Runnable runnable = createSingleServerRequest(runner.getActions(), numAttempt, server, callsInProgress);
 // use a delay runner only if we need to sleep for some time
 if (runner.getSleepTime() > 0) {
    runner.setRunner(runnable);
 traceText = "AsyncProcess.clientBackoff.sendMultiAction";
 runnable = runner;
    if (connection.getConnectionMetrics() != null) {
 connection.getConnectionMetrics().incrDelayRunners();
 connection.getConnectionMetrics().updateDelayInterval(runner.getSleepTime());
 }
  } else {
 if (connection.getConnectionMetrics() != null) {
 connection.getConnectionMetrics().incrNormalRunners();
 }
  }
  runnable = Trace.wrap(traceText, runnable);
 toReturn.add(runnable);

进入SingleServerRequestRunnable,分析其Run方法

代码语言:js
复制
// setup the callable based on the actions, if we don't have one already from the request
if (callable == null) {
  callable = createCallable(server, tableName, multiAction);
}
RpcRetryingCaller<MultiResponse> caller = createCaller(callable, rpcTimeout);
try {
 if (callsInProgress != null) {
 callsInProgress.add(callable);
 }
  res = caller.callWithoutRetries(callable, operationTimeout);

然后是RpcRetryingCaller中调用了MultiServerCallable的call方法,主要是构建请求,调用RPC。这就进入了服务端也即RSRpcServices的mutil方法。

代码语言:js
复制
responseProto = getStub().multi(controller, requestProto);

C),HRegionserver端处理

RSRpcServices是服务端,本文对应的服务端实现是RSRpcServices.mutli。

代码语言:js
复制
if (request.hasCondition()) {
  Condition condition = request.getCondition();
  byte[] row = condition.getRow().toByteArray();
  byte[] family = condition.getFamily().toByteArray();
  byte[] qualifier = condition.getQualifier().toByteArray();
 CompareOp compareOp = CompareOp.valueOf(condition.getCompareType().name());
 ByteArrayComparable comparator =
      ProtobufUtil.toComparator(condition.getComparator());
 processed = checkAndRowMutate(region, regionAction.getActionList(),
 cellScanner, row, family, qualifier, compareOp,
 comparator, regionActionResultBuilder);
} else {
  mutateRows(region, regionAction.getActionList(), cellScanner,
 regionActionResultBuilder);
 processed = Boolean.TRUE;
}

根据条件进入checkAndRowMutate或者mutateRows。

根据类型做不同的操作,然后正式进入执行操作

代码语言:js
复制
MutationType type = action.getMutation().getMutateType();
  if (rm == null) {
    rm = new RowMutations(action.getMutation().getRow().toByteArray());
 }
 switch (type) {
 case PUT:
      rm.add(ProtobufUtil.toPut(action.getMutation(), cellScanner));
      break;
    case DELETE:
      rm.add(ProtobufUtil.toDelete(action.getMutation(), cellScanner));
      break;
    default:
 throw new DoNotRetryIOException("Atomic put and/or delete only, not " + type.name());
 }
 // To unify the response format with doNonAtomicRegionMutation and read through client's
  // AsyncProcess we have to add an empty result instance per operation
 resultOrExceptionOrBuilder.clear();
 resultOrExceptionOrBuilder.setIndex(i++);
 builder.addResultOrException(
      resultOrExceptionOrBuilder.build());
}
region.mutateRow(rm);

HRegion.mutateRow方法

HRegion.mutateRowsWithLocks

代码语言:js
复制
public void mutateRowsWithLocks(Collection<Mutation> mutations,
 Collection<byte[]> rowsToLock) throws IOException {
  mutateRowsWithLocks(mutations, rowsToLock, HConstants.NO_NONCE, HConstants.NO_NONCE);
}
代码语言:js
复制
public void mutateRowsWithLocks(Collection<Mutation> mutations,
 Collection<byte[]> rowsToLock, long nonceGroup, long nonce) throws IOException {
  MultiRowMutationProcessor proc = new MultiRowMutationProcessor(mutations, rowsToLock);
 processRowsWithLocks(proc, -1, nonceGroup, nonce);
}

具体处理的过程,可以自行去看了,源码注释条例很清晰。

四,总结

Hbase的JAVA API客户端,写操作有三种实现:

1,HTablePool

源码请看hbase权威指南。

2,HConnection

这种方式要自己实现一个线程池。

代码语言:js
复制
Connection conn = ConnectionFactory.createConnection(conf);
TableName tabName=  TableName.valueOf("tableName");
Table table=conn.getTable(tabName);

3,BufferedMutator

建议put操作采用这种方式。

批量,异步puts操作。MR都在采用,你还在等啥呢。

Demo请看上文。

客户端读写数据的操作,我们就讲这两篇,后面开始讲HBase的MR建立二级索引的实现及原理源码。然后就开始讲解管理类操作的实现。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-07-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 浪尖聊大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档