2021 年,AlphaFold2 的出现彻底改变了蛋白质结构生物学。这一高度精准的蛋白结构预测工具几乎在发布的第一时间,就对整个生命科学研究领域产生了深远影响。正因如此,蛋白结构预测也被评选为 2021 年的 Method of the Year。在此之后,结构预测从“计算辅助”跃升为“研究核心工具”。
Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2
Method of the Year 2021: Protein structure prediction. Nat Methods 19, 1 (2022). https://doi.org/10.1038/s41592-021-01380-4
De Novo RNA Tertiary Structure Prediction at Atomic Resolution Using Geometric Potentials from Deep Learning. Robin Pearce, Gilbert S. Omenn, Yang Zhang. bioRxiv 2022.05.15.491755; doi: https://doi.org/10.1101/2022.05.15.491755
Li, Y., Zhang, C., Feng, C. et al. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat Commun 14, 5745 (2023). https://doi.org/10.1038/s41467-023-41303-9
Wang, W., Feng, C., Han, R. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat Commun 14, 7266 (2023). https://doi.org/10.1038/s41467-023-42528-4
Shen, T., Hu, Z., Sun, S. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat Methods 21, 2287–2298 (2024). https://doi.org/10.1038/s41592-024-02487-0
Kagaya, Y., Zhang, Z., Ibtehaz, N. et al. NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation. Nat Commun 16, 881 (2025). https://doi.org/10.1038/s41467-025-56261-7
Das R, Kretsch RC, Simpkin AJ, et al. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins. 2023; 91(12): 1747-1770. doi:10.1002/prot.26602
Bu, F., Adam, Y., Adamiak, R.W. et al. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat Methods 22, 399–411 (2025). https://doi.org/10.1038/s41592-024-02543-9