版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dream_an/article/details/100591892
Flink是最热门的实时计算引擎之一。在动手部署和编程之前,学习Flink的数据流编程模型,可以建立起核心概念的全局架构。方便局部概念深入学习。
Apache Flink:数据流编程模型
▾点击播放视频教程▾
https://www.bilibili.com/video/av66869896/
Flink的数据流编程模型(基于最新版flink1.9),共包含的概念有:抽象层级,程序和数据流,并行数据流,窗口,时间概念,有状态计算,容错检查点。
Flink提供不同级别的抽象来开发流/批处理应用程序。
Flink程序的基本构建块是流和转换。(请注意,Flink的DataSet API中使用的DataSet也是内部流 - 稍后会详细介绍。)从概念上讲,流是(可能永无止境的)数据记录流,而转换的操作是将一个或多个流作为输入,并产生一个或多个输出流作为结果。
执行时,Flink程序映射到流式数据流,由流和转换算子组成。每个数据流都以一个或多个源开始,并以一个或多个接收器结束。数据流类似于任意有向无环图(DAG) 。尽管通过迭代结构允许特殊形式的循环,但为了简单起见,我们将在大多数情况下对其进行掩盖。
通常,程序中的转换与数据流中的算子之间存在一对一的对应关系。但是,有时一个转换可能包含多个转换算子。 源和接收器记录在流连接器和批处理连接器文档中。转换在DataStream operators算子和DataSet转换文档中。
Flink中的程序本质上是并行和分布式的。在执行期间,流具有一个或多个流分区,并且每个算子具有一个或多个算子子任务。算子子任务彼此独立,并且可以在不同的线程中执行,并且可能在不同的机器或容器上执行。 算子子任务的数量是该特定算子的并行度。流的并行度始终是其生成算子的并行度。同一程序的不同算子可能具有不同的并行级别。
流可以在一对一(或转发)模式或在重新分发模式的两个算子之间传输数据:
聚合事件(例如,计数,总和)在流上的工作方式与批处理方式不同。例如,不可能计算流中的所有元素,因为流通常是无限的(无界)。相反,流上的聚合(计数,总和等)由窗口限定,例如“在最后5分钟内计数”或“最后100个元素的总和” 。
窗口可以是时间驱动的(例如:每30秒)或数据驱动(例如:每100个元素)。人们通常区分不同类型的窗口,例如翻滚窗口(没有重叠),滑动窗口(具有重叠)和会话窗口(由不活动间隙打断)。
当在流程序中引用时间(例如定义窗口)时,可以参考不同的时间概念:
虽然数据流中的许多计算只是一次查看一个单独的事件(例如事件解析器),但某些操作会记住多个事件(例如窗口操作符)的信息。这些操作称为有状态。
状态计算的状态保持在可以被认为是嵌入式键/值存储的状态中。状态被严格地分区和分布在有状态计算读取的流中。因此,只有在keyBy()函数之后才能在有键的流上访问键/值状态,并且限制为与当前事件的键相关联的值。对齐流和状态的键可确保所有状态更新都是本地操作,从而保证一致性而无需事务开销。此对齐还允许Flink重新分配状态并透明地调整流分区。
Flink使用流重放和检查点(checkpointing)的组合实现容错。检查点与每个输入流中的特定点以及每个操作符的对应状态相关。通过恢复算子的状态并从检查点重放事件,可以从检查点恢复流数据流,同时保持一致性(恰好一次处理语义) 。 检查点间隔是在执行期间用恢复时间(需要重放的事件的数量)来折中容错开销的手段。 容错内部的描述提供了有关Flink如何管理检查点和相关主题的更多信息。
Flink流程序上执行批处理,其中流是有界的(有限数量的元素)。DataSet在内部被视为数据流。因此,上述概念以相同的方式应用于批处理程序,并且除了少数例外它们适用于流程序: