一种使用带标签的训练数据(结构化数据)将特定输入映射到输出的机器学习模型。简单来说,要训练算法识别猫的图片,则向其提供标记为猫的图片。
一种根据无标签数据(非结构化数据)学习模式的机器学习模型。与监督式学习不同,最终结果不会提前知道。相反,算法会从数据中学习,根据特性将其归类。例如,非监督式学习擅长模式匹配和描述性建模。
顾名思义,该方法结合了有监督学习和无监督学习。该技术使用少量已标注数据和大量未标注数据来训练系统。首先,标注的数据用于部分训练机器学习算法。然后,部分训练后的算法本身会为未标注数据添加标注。此流程被称为伪标注。然后,该模型在没有明确编程的情况下,根据生成的数据组合进行重新训练。
一种可以广义地描述为“边做边学”的机器学习模型。“代理”通过反复试验(反馈环)学习执行定义的任务,直到其性能处于理想范围内。当代理出色执行任务时,它会获得正强化;当代理表现不佳时,它会获得负强化。强化学习的一个例子是教机器人手捡球。