首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何让Python求解这个二阶非线性常微分方程?

要让Python求解二阶非线性常微分方程,可以使用数值求解方法,如欧拉法、改进的欧拉法、龙格-库塔法等。以下是一个示例代码,演示如何使用龙格-库塔法求解二阶非线性常微分方程:

代码语言:txt
复制
import numpy as np
from scipy.integrate import solve_ivp

def equation(t, y):
    # 定义二阶非线性常微分方程
    dydt = np.zeros_like(y)
    dydt[0] = y[1]
    dydt[1] = -np.sin(y[0])
    return dydt

# 定义初始条件和时间范围
y0 = [0, 1]  # 初始条件
t_span = [0, 10]  # 时间范围

# 使用solve_ivp函数求解微分方程
sol = solve_ivp(equation, t_span, y0)

# 打印结果
print(sol.y)

在上述代码中,首先定义了一个名为equation的函数,用于表示二阶非线性常微分方程。然后,使用solve_ivp函数传入微分方程函数、初始条件和时间范围进行求解。最后,打印出求解结果。

这是一个简单的示例,实际应用中可能需要根据具体的非线性常微分方程进行相应的修改。对于更复杂的问题,可以考虑使用更高阶的数值求解方法或者符号计算库,如SymPy。

请注意,腾讯云并没有直接相关的产品或服务与此问题相关,因此无法提供相关链接。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

使用Maxima求解常微分方程~

使用Maxima求解常微分方程~ 含带导数符号或带微分符号的未知函数的方程称为微分方程。 如果在微分方程中未知函数是一个变元的函数,这样的微分方程称为常微分方程。...1 一阶、二阶常微分方程的通解 Maxima 可以求解很多种类的常微分方程。 对于可以给出闭式解的一阶和二阶常微分方程,Maxima 会试图求出其精确解。 下面给出三个简单的例子。...上面的例子用了ode2函数来求解常微分方程。 在定义方程时,微分函数diff之前有一个单引号(‘),这表示Maxima只给出形式上的输出,并不真的进行计算。...ode2函数只能求解一阶和二阶常微分方程,第三个例子给出的是一个三阶常微分方程,无法求解,因此输出 false。...4 利用Laplace变换法求解常微分方程(组) 如果待求解常微分方程(组)是线性常系数的。则可以利用Laplace变换法来求解

1.6K20

数学建模--微分方程

总结来说,常微分方程在描述单变量函数随时间变化时具有优势,但其解析解往往难以求得; 在进行微分方程模型求解时,哪些数值方法最有效,且如何选择最适合的问题类型?...如何选择最适合的问题类型 对于线性微分方程,可以使用积分方法直接求解。如果需要数值解,则可以选择欧拉法或改进的欧拉法。...非线性微分方程通常难以找到解析解,因此需要采用数值方法。龙格-库塔法和多步法是较好的选择,因为它们具有较高的精度和稳定性。 偏微分方程的数值求解通常采用有限差分法或有限元法。...总之,在选择数值方法时,应根据具体问题的性质(如线性或非线性)、求解精度要求以及计算资源等因素综合考虑。...他们发展了新的方法和体系,用于大模型回归学习训练求解非线性问题。 徐成喜、张健和姚佳烽等人构建了基于专家系统和神经常微分方程(DDEs)的延迟混合模型,并将其应用于疾病进展预测。

11110
  • 天生一对,硬核微分方程与深度学习的「联姻」之路

    如上图所示,比较受关注的是神经网络架构与数值微分方程之间的关系,这个领域早期比较有影响的就是北大、普林斯顿教授鄂维南老师的研究,它首次将残差网络理解为微分方程。...不过本身反向欧拉要求解一个非常巨大的非线性方程组的逆,这样无法求解就只能用多项式去逼近解。也就是说,上式的求逆又可以写为: ?...如果我们用业界成熟的微分方程求解器(ODESolve)解某个 ODE,这不就能代替前传和反传么?...微分方程也能搭生成模型 在 ODENet 中,研究者也展示了将微分方程应用到生成模型的前景。因此在 ICLR 2019 中,陈天琦等研究者进一步研究了微分方程如何用于流模型。...后面提出的 FFJORD 进一步发扬了这种观点,它将迹估计和前向传播都定义为了常微分方程,并使用 ODESolver 直接求解。直观而言,FFJORD 的抽象过程可如下图所示: ?

    1.4K31

    机器学习会取代数学建模吗?让我们假设一个微积分落后但深度学习发达的文明社会……

    我们高中的时候都学过三角函数,科学家们认为这个问题可能会涉及一些三角函数与速度的乘积。于是他们把模型写成非线性基函数的线性组合: ? ? ? ?...该模型可以写成二阶微分方程组: ? 初值条件为: ? 后两个方程式描述了炮弹最初发射时的速度的水平和垂直分量。这些方程描述了系统,但如何解决这些问题呢?...2.数值积分 通常在数学中,写下微分方程是一个简单的部分,大部分时间都花在试图解决它们上面! 他们写出了该问题的一阶常微分方程(ODE): ? 初值条件为: ? 易证这两个方程相同。...x和y的方程可以独立求解。通过求解每个方程(并应用初始条件)给出。 ? 他们以x和y坐标作为时间的函数。什么时候射弹击中了地面呢?当y=0时!即: ?...神经常微分方程方法-学习动力系统 最后,假设他们不知道物理模型,只有一个常微分方程系统 ? 其中f1和f2是未知的(为简洁起见省略虚拟变量)。

    78910

    最优控制——变分法

    泛函的定义域是函数集,值域是数集,也就是说,泛函是从函数空间到数域的一个映射 3、最优控制问题的四个基本元素:状态方程、容许控制、目标集、性能指标 其中状态方程(关于状态变量和控制变量的常微分方程)...是最优控制问题与经典变分问题的重要区别之一 4、经典变分问题需要连续的控制变量—>之后的极小值原理处理不连续控制变量、状态变量或者控制变量有约束的情况—>更复杂的非线性状态方程、控制变量不可微等...(链式法则,先对x求,再对x’求,以及分步积分巴拉巴拉复习一下 ) 2、拉格朗日的delata方法,加以扰动,对比最优曲线和扰动后的曲线,看新的性能指标是不是会<最优的,若是极值点,这个增量应该总是>...不适用场景:控制变量或其分量取值于实数空间中的闭区间 3、最简变分法:(欧拉-拉格朗日方程) 求变分不止可以用看线性泛函和高阶无穷小,还可以用微积分的方法求解: 4、 欧拉-拉格朗日方程是关于状态x...的二阶微分方程 分为三种情况: 三种结果: 5、hamilton方程组 物理学家将欧拉-拉格朗日这个二阶微分方程化成了一阶常微分方程组 6、等式约束的处理 拉格朗日乘子法 发布者:全栈程序员栈长

    1.2K30

    机器学习会取代数学建模吗?让我们假设一个微积分落后但深度学习发达的文明社会……

    我们高中的时候都学过三角函数,科学家们认为这个问题可能会涉及一些三角函数与速度的乘积。于是他们把模型写成非线性基函数的线性组合: ? ? ? ?...该模型可以写成二阶微分方程组: ? 初值条件为: ? 后两个方程式描述了炮弹最初发射时的速度的水平和垂直分量。这些方程描述了系统,但如何解决这些问题呢?...2.数值积分 通常在数学中,写下微分方程是一个简单的部分,大部分时间都花在试图解决它们上面! 他们写出了该问题的一阶常微分方程(ODE): ? 初值条件为: ? 易证这两个方程相同。...x和y的方程可以独立求解。通过求解每个方程(并应用初始条件)给出。 ? 他们以x和y坐标作为时间的函数。什么时候射弹击中了地面呢?当y=0时!即: ?...神经常微分方程方法-学习动力系统 最后,假设他们不知道物理模型,只有一个常微分方程系统 ? 其中f1和f2是未知的(为简洁起见省略虚拟变量)。

    46310

    机器学习会取代数学建模吗?

    我们高中的时候都学过三角函数,科学家们认为这个问题可能会涉及一些三角函数与速度的乘积。于是他们把模型写成非线性基函数的线性组合: 把非线性嵌入到线性模型之后,模型可以像线性模型一样计算参数。...该模型可以写成二阶微分方程组: 初值条件为: 后两个方程式描述了炮弹最初发射时的速度的水平和垂直分量。这些方程描述了系统,但如何解决这些问题呢?...2.数值积分 通常在数学中,写下微分方程是一个简单的部分,大部分时间都花在试图解决它们上面! 他们写出了该问题的一阶常微分方程(ODE): 初值条件为: 易证这两个方程相同。...x和y的方程可以独立求解。通过求解每个方程(并应用初始条件)给出。 他们以x和y坐标作为时间的函数。什么时候射弹击中了地面呢?当y=0时!...神经常微分方程方法-学习动力系统 最后,假设他们不知道物理模型,只有一个常微分方程系统 其中f1和f2是未知的(为简洁起见省略虚拟变量)。

    1.4K30

    一份简短又全面的数学建模技能图谱:常用模型&算法总结

    深度学习模型 【26】神经网络模型 四、模型求解与优化 【27】数值优化方法 【28】组合优化算法 【29】差分方程模型 【30】常微分方程的解法 【31】偏微分方程的数值解 【32】稳定状态模型...以及如何找到这个合理的行动方案。...主要用于时间序列模型和求解常微分方程。在求微分方程的数值解时,常用差分来近似微分,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化的一个例子。...【博文链接】 常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似 常微分方程的解法 (二): 欧拉(Euler)方法 常微分方程的解法 (三): 龙格...我们的目标函数或约束条件就常常是与回报OR风险有关,而要求解的就是各种股票在这个投资组合中占的这个比例,也就是权重。

    3.7K42

    【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】

    常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(Ordinary Differential Equations, ODEs)的问题。 一、数值积分法 1....向前欧拉法(前向欧拉法) 【计算方法与科学建模】常微分方程初值问题的数值积分法:欧拉方法(向前Euler及其python实现) 向前差商近似微商: 在节点 X_n 处,通过向前差商 \frac{...向后 Euler 方法给出了一个隐式的递推公式,其中 y_{n+1} 出现在方程的右侧,需要通过求解非线性方程来获得。 求解方式: 向前 Euler 方法的解可以通过简单的迭代计算得到。...向后 Euler 方法的解需要通过迭代求解非线性方程,通常,可以使用迭代法,如牛顿迭代法,来逐步逼近方程的解。...equation = lambda y_next: y_next - y_values[i - 1] - h * f(x, y_next) # 利用 fsolve 求解非线性方程

    13510

    高数期末有救了?AI新方法解决高数问题,性能超越Matlab

    然后展示了如何为积分和一阶、二阶微分方程的监督式训练生成数据集。最后,研究者对数据集应用 seq2seq 模型,发现其性能超过当前最优的计算机代数程序 Matlab 和 Mathematica。...一阶常微分方程(ODE 1) 如何生成具备解的一阶常微分方程?研究者提出了一种方法。给定一个双变量函数 F(x, y),使方程 F(x, y) = c(c 是常量)的解析解为 y。...二阶常微分方程(ODE 2) 前面介绍的生成一阶常微分方程的方法也可用于二阶常微分方程,只需要考虑解为 c_2 的三变量函数 f(x, c_1, c_2)。...通过该方法,研究者创建了二阶常微分方程及其解的对,前提是生成的 f(x, c_1, c_2) 的解为 c_2,对应一阶常微分方程的解为 c_1。...系数简化:在一阶常微分方程中,研究者更改一个变量,将生成的表达式变为另一个等价表达式。研究者对二阶常微分方程也使用了类似的方法,不过二阶方程有两个常量 c_1 和 c_2,因此简化略微复杂一些。

    1.5K20

    matlab求解微分方程组(matlab解微分方程的数值解)

    如何用matlab来求解简单的微分方程?举例来说明吧。 求解三阶常微分方程。我们知道,求解高阶常微分方程可以化为求解一阶常微分方程组。...编写函数eq3.m: %解常微分方程 3*y'''+5*y''+6*sin(t)*y=cost function ydot = eq3(t,y) ydot=[y(2);y(3);(cos(t)-5*y...事实上,说白了,这个函数就是申明一下变量使t和y,以及y一阶导的右端项为那三个。...如图: 二阶常微分方程 编写函数eq2.m function ydot= eq2(t,y) ydot=[y(2);-3-cos(2*t) + 2*sin(t)+t-3.8]; 主函数 clc...求解微分方程,以上matlab内部用的是欧拉折现法,或者是单步法的改进,得不到一个解析解。那么如何求带初值问题的解析解呢?

    1.6K30

    常微分方程的数值解

    常微分方程组的数值解法 1. 一阶常微分方程组的数值解法 2. 高阶微分方程数值方法 0....问题描述 这一章节考察的问题如标题所述,即常微分方程的数值求解: \left\{ \begin{aligned} \frac{dy}{dx} &= f(x, y) \\ y(x_0) &= y_0 \end...向前Euler公式 Euler公式算是一个求解常微分方程数值解问题的一个比较直接的思路: \frac{dy}{dx} = \frac{\delta y}{\delta x} = f(x, y) 从而有:...常微分方程组的数值解法 1....这一类问题事实上可以作为上述一阶常微分方程组的一个应用实例,我们只需要做如下变换就可以将问题完全转换为一个一阶常微分方程组,然后就可以运用之前的一阶常微分方程组的数值解法进行求解了。

    2.7K30

    为什么数值仿真里要用RK4(龙格库塔法)

    小跳最近在搭建一个数值仿真环境,由于需要用到python里面的一些库,所以不得不把simulink的模型搬过来,我们都知道在simulink里,仿真的时候设置仿真步长和微分方程求解器是必要的步骤。...dt\) 可以看到,线性常微分方程误差尚且如此之大,那么推广到非线性微分方程,像这种形式 \[ \dot x = f(x,t) = tx^2 - \frac{x}{t}...定义回顾 数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。...该方法主要是在已知方程导数和初值信息,利用计算机仿真时应用,省去求解微分方程的复杂过程。 令初值问题表述如下。...这个速查表,可以关注微信公众号“探物及理”后台回复“python画图”领取。

    1.9K20

    Matlab通过ode系列函数求解微分方程

    MATLAB有很多用于求解微分方程的内置函数。MATLAB包含了用于求解常微分方程(ODE)的函数,微分表达式一般如下 对于高阶微分方程必须重新表述为一个一阶系统微分方程。...并不是所有的微分方程都可以用同样的方法求解,所以MATLAB提供了许多不同的常微分方程求解器,如ode45、ode23、ode113等。...x0=1; a=-1/5; b=1; param=[a b]; [t,y]=ode45(@mysimplediff, tspan, x0,[], param); plot(t,y) 使用ode23函数求解微分方程并绘制...[t0,tf]区间上 假定 微分方程可表达为: function dw = diff_task3(t,w) dw = -(1.2 + sin(10*t))*w; tspan=[0 5]; w0...=1; [t,w]=ode23(@diff_task3, tspan, w0); plot(t,w) 求解含有二阶的微分方程 令: 高阶的系统(二阶、三阶等)需要降为一阶来书写表达式,学过现代控制理论的应该熟悉这个

    1.1K31

    神经网络常微分方程 (Neural ODEs) 解析

    为什么我们关注常微分方程呢? 首先,让我们快速简要概括一下令人讨厌的常微分方程是什么。常微分方程描述了某些由一个变量决定的过程随时间的变化。这个时间的变化通过下面的微分方程来描述。...简单的常微分方程的例子 通常情况下,如果我们知道了某些初始条件(过程开始的地方),并且我们想了解这个过程将如何变化成某些最终状态,我们才能讨论解这个微分方程。...求解函数也被叫做积分曲线(因为我们可以通过对这个方程积分得到方程的解x(t)).让我们尝试用SymPy软件包来解一下上面图片上的方程: from sympy import dsolve, Eq, symbols...在经典的序列建模过程中,您会如何处理这种情况呢?把它扔给递归神经网络,甚至不需要进一步设计模型。在这一部分中,我们将检查神经网络微分方程如何解决这个问题。...结 论 个人认为,神经网络常微分方程还没有准备好在实践中使用。这个想法本身很棒,从创新的水平来看,它我想起杰弗里·辛顿(Geoffrey Hinton)的胶囊网络,但它们现在怎么样了呢?

    6.7K32

    AI攻破高数核心,1秒内精确求解微分方程、不定积分,性能远超Matlab

    还能解常微分方程: ? 一阶二阶都可以。 这是Facebook发表的新模型,1秒给出的答案,超越了Mathematica和Matlab这两只付费数学软件30秒的成绩。...到时候付费软件怎么办? 巨大数据集的生成姿势 要训练模型做微积分题目,最重要的前提就是要有大大大的数据集。...一阶常微分方程,和它的解 从一个二元函数F(x,y)说起。 有个方程F(x,y)=c,可对y求解得到y=f(x,c)。就是说有一个二元函数f,对任意x和c都满足: ?...二阶常微分方程,和它的解 二阶的原理,是从一阶那里扩展来的,只要把f(x,c)变成f(x,c1,c2) ,对c2有解。 微分方程F要满足: ? 把它对x求导,会得到: ?...现在,求积分和求解微分方程两个训练集都有了。那么问题也来了,AI要怎么理解这些复杂的式子,然后学会求解方法呢?

    94930

    有限元法在非线性偏微分方程中的应用

    首先简要回顾用于求解 PDE 的 Wolfram 语言基本语法,包括如何指定狄利克雷和诺伊曼边界条件;随后我们将通过一个具体的非线性问题,说明 Mathematica 12的 FEM 求解过程。...中 Coefficient Form 的形式,不能用 FEM 求解(u´´(x) 被视为 u´(x) 的系数,造成系数依赖于二阶导数函数的结果)。...在线性 PDE 的情况下,联立线性方程组是从 PDE 的弱形式到离散化来求解的,但这也用于求解非线性 PDE。...Newton-Raphson 方法求解非线性代数方程式的过程相同。...对于时间相关的积分,可以通过离散化空间维度以获得方程组(矩阵),然后将其作为关于时间的常微分方程,从而应用各种计算方法。

    2.5K30
    领券