我正在测试数据集上的情感分析。在这里,我想看看在消息量和buzzs、消息量和分数之间是否有什么有趣的观察.
我的数据集是这样的:
> str(data)
'data.frame': 40 obs. of 11 variables:
$ Date Time : POSIXct, format: "2015-07-08 09:10:00" "2015-07-08 09:10:00" ...
$ Subject : chr "MMM" "ACE" "AES" "AFL" ...
$ Sscore : chr "-0.2280" "-0.4415" "1.9821" "-2.9335" ...
$ Smean : chr "0.2593" "0.3521" "0.0233" "0.0035" ...
$ Svscore : chr "-0.2795" "-0.0374" "1.1743" "-0.2975" ...
$ Sdispersion : chr "0.375" "0.500" "1.000" "1.000" ...
$ Svolume : num 8 4 1 1 5 3 2 1 1 2 ...
$ Sbuzz : chr "0.6026" "0.7200" "1.9445" "0.8321" ...
$ Last close : chr "155.430000000" "104.460000000" "13.200000000" "61.960000000" ...
$ Company name: chr "3M Company" "ACE Limited" "The AES Corporation" "AFLAC Inc." ...
$ Date : Date, format: "2015-07-08" "2015-07-08" ...
我想到了一个线性回归,所以我想使用ggplot,但是我使用了这段代码,我认为我错了,因为我没有出现的回归线。是因为回归太弱了吗?我帮助编写了来自:code of topchef的代码
我的是:
library(ggplot2)
require(ggplot2)
library("reshape2")
require(reshape2)
data.2 = melt(data[3:9], id.vars='Svolume')
ggplot(data.2) +
geom_jitter(aes(value,Svolume, colour=variable),) + geom_smooth(aes(value,Svolume, colour=variable), method=lm, se=FALSE) +
facet_wrap(~variable, scales="free_x") +
labs(x = "Variables", y = "Svolumes")
但我可能是因为我没有得到我想要的东西而忘记了什么。我对R非常陌生,所以我希望有人能帮我。
我有一个错误:
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
最后,您认为可以为不同的主题有不同的颜色而不是每个变量一种颜色吗?我可以在每个图上添加回归线吗?
谢谢你的帮助。
样本数据:
Date Time Subject Sscore Smean Svscore Sdispersion Svolume Sbuzz Last close Company name Date
1 2015-07-08 09:10:00 MMM -0.2280 0.2593 -0.2795 0.375 8 0.6026 155.430000000 3M Company 2015-07-08
2 2015-07-08 09:10:00 ACE -0.4415 0.3521 -0.0374 0.500 4 0.7200 104.460000000 ACE Limited 2015-07-08
3 2015-07-07 09:10:00 AES 1.9821 0.0233 1.1743 1.000 1 1.9445 13.200000000 The AES Corporation 2015-07-07
4 2015-07-04 09:10:00 AFL -2.9335 0.0035 -0.2975 1.000 1 0.8321 61.960000000 AFLAC Inc. 2015-07-04
5 2015-07-07 09:10:00 MMM 0.2977 0.2713 -0.7436 0.400 5 0.4895 155.080000000 3M Company 2015-07-07
6 2015-07-07 09:10:00 ACE -0.2331 0.3519 -0.1118 1.000 3 0.7196 103.330000000 ACE Limited 2015-07-07
7 2015-06-28 09:10:00 AES 1.8721 0.0609 1.9100 0.500 2 2.4319 13.460000000 The AES Corporation 2015-06-28
8 2015-07-03 09:10:00 AFL 0.6024 0.0330 -0.2663 1.000 1 0.6822 61.960000000 AFLAC Inc. 2015-07-03
9 2015-07-06 09:10:00 MMM -1.0057 0.2579 -1.3796 1.000 1 0.4531 155.380000000 3M Company 2015-07-06
10 2015-07-06 09:10:00 ACE -0.0263 0.3435 -0.1904 1.000 2 1.3536 103.740000000 ACE Limited 2015-07-06
11 2015-06-19 09:10:00 AES -1.1981 0.1517 1.2063 1.000 2 1.9427 13.850000000 The AES Corporation 2015-06-19
12 2015-07-02 09:10:00 AFL -0.8247 0.0269 1.8635 1.000 5 2.2454 62.430000000 AFLAC Inc. 2015-07-02
13 2015-07-05 09:10:00 MMM -0.4272 0.3107 -0.7970 0.167 6 0.6003 155.380000000 3M Company 2015-07-05
14 2015-07-04 09:10:00 ACE 0.0642 0.3274 -0.0975 0.667 3 1.2932 103.740000000 ACE Limited 2015-07-04
15 2015-06-17 09:10:00 AES 0.1627 0.1839 1.3141 0.500 2 1.9578 13.580000000 The AES Corporation 2015-06-17
16 2015-07-01 09:10:00 AFL -0.7419 0.0316 1.5699 0.250 4 2.0988 62.200000000 AFLAC Inc. 2015-07-01
17 2015-07-04 09:10:00 MMM -0.5962 0.3484 -1.2481 0.667 3 0.4496 155.380000000 3M Company 2015-07-04
18 2015-07-03 09:10:00 ACE 0.8527 0.3085 0.1944 0.833 6 1.3656 103.740000000 ACE Limited 2015-07-03
19 2015-06-15 09:10:00 AES 0.8145 0.1725 0.2939 1.000 1 1.6121 13.350000000 The AES Corporation 2015-06-15
20 2015-06-30 09:10:00 AFL 0.3076 0.0538 -0.0938 1.000 1 0.7071 61.440000000 AFLAC Inc. 2015-06-30
德普特
data <- structure(list(`Date Time` = structure(c(1436361000, 1436361000,
1436274600, 1436015400, 1436274600, 1436274600, 1435497000, 1435929000,
1436188200, 1436188200, 1434719400, 1435842600, 1436101800, 1436015400,
1434546600, 1435756200, 1436015400, 1435929000, 1434373800, 1435669800
), class = c("POSIXct", "POSIXt"), tzone = ""), Subject = c("MMM",
"ACE", "AES", "AFL", "MMM", "ACE", "AES", "AFL", "MMM", "ACE",
"AES", "AFL", "MMM", "ACE", "AES", "AFL", "MMM", "ACE", "AES",
"AFL"), Sscore = c(-0.228, -0.4415, 1.9821, -2.9335, 0.2977,
-0.2331, 1.8721, 0.6024, -1.0057, -0.0263, -1.1981, -0.8247,
-0.4272, 0.0642, 0.1627, -0.7419, -0.5962, 0.8527, 0.8145, 0.3076
), Smean = c(0.2593, 0.3521, 0.0233, 0.0035, 0.2713, 0.3519,
0.0609, 0.033, 0.2579, 0.3435, 0.1517, 0.0269, 0.3107, 0.3274,
0.1839, 0.0316, 0.3484, 0.3085, 0.1725, 0.0538), Svscore = c(-0.2795,
-0.0374, 1.1743, -0.2975, -0.7436, -0.1118, 1.91, -0.2663, -1.3796,
-0.1904, 1.2063, 1.8635, -0.797, -0.0975, 1.3141, 1.5699, -1.2481,
0.1944, 0.2939, -0.0938), Sdispersion = c(0.375, 0.5, 1, 1, 0.4,
1, 0.5, 1, 1, 1, 1, 1, 0.167, 0.667, 0.5, 0.25, 0.667, 0.833,
1, 1), Svolume = c(8L, 4L, 1L, 1L, 5L, 3L, 2L, 1L, 1L, 2L, 2L,
5L, 6L, 3L, 2L, 4L, 3L, 6L, 1L, 1L), Sbuzz = c(0.6026, 0.72,
1.9445, 0.8321, 0.4895, 0.7196, 2.4319, 0.6822, 0.4531, 1.3536,
1.9427, 2.2454, 0.6003, 1.2932, 1.9578, 2.0988, 0.4496, 1.3656,
1.6121, 0.7071), `Last close` = c(155.43, 104.46, 13.2, 61.96,
155.08, 103.33, 13.46, 61.96, 155.38, 103.74, 13.85, 62.43, 155.38,
103.74, 13.58, 62.2, 155.38, 103.74, 13.35, 61.44), `Company name` = c("3M Company",
"ACE Limited", "The AES Corporation", "AFLAC Inc.", "3M Company",
"ACE Limited", "The AES Corporation", "AFLAC Inc.", "3M Company",
"ACE Limited", "The AES Corporation", "AFLAC Inc.", "3M Company",
"ACE Limited", "The AES Corporation", "AFLAC Inc.", "3M Company",
"ACE Limited", "The AES Corporation", "AFLAC Inc."), Date = structure(c(16624,
16624, 16623, 16620, 16623, 16623, 16614, 16619, 16622, 16622,
16605, 16618, 16621, 16620, 16603, 16617, 16620, 16619, 16601,
16616), class = "Date")), .Names = c("Date Time", "Subject",
"Sscore", "Smean", "Svscore", "Sdispersion", "Svolume", "Sbuzz",
"Last close", "Company name", "Date"), row.names = c("1", "2",
"3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14",
"15", "16", "17", "18", "19", "20"), class = "data.frame")
发布于 2015-07-14 08:28:03
注意警告Maybe you want aes(group = 1)
。我所做的就是将group = 1
添加到aes
for geom_smooth
中。
ggplot(data.2) +
geom_jitter(aes(value,Svolume, colour=variable),) +
geom_smooth(aes(value,Svolume, colour=variable, group = 1), method=lm, se=FALSE) +
facet_wrap(~variable, scales="free_x") +
labs(x = "Variables", y = "Svolumes")
一些主动提出的建议
require
和library
,一个或另一个。aes
一次下面是我如何编写ggplot代码的方法:
library(ggplot2)
require(reshape2)
data.2 = melt(data[3:9], id.vars='Svolume')
ggplot(data.2) +
aes(x = value, y = Svolume, colour = variable) +
geom_jitter() +
geom_smooth(method=lm, se=FALSE, aes(group = 1)) +
facet_wrap(~variable, scales="free_x") +
labs(x = "Variables", y = "Svolumes")
https://stackoverflow.com/questions/31410230
复制相似问题