通过对 AI 的发展、以及模型算法、硬件与数据的趋势介绍,我们已经了解了 AI 系统的重要性。本文将介 AI 系统的设计目标、组成和生态,让读者形成 AI 系统的知识体系,为后续展开每篇文章的内容做好铺垫。
AI 系统设计本身需要各个环节通盘考量,无论是系统性能,还是用户体验,亦或是稳定性等指标,甚至在开源如火如荼发展的今天,开源社区运营也成为 AI 系统推广本身不可忽视的环节。接下来将从不同的维度和技术层面展开 AI 系统的全景图。
从类比的角度理解 AI 系统:AI 时代连接硬件和上层应用的中间层软硬件基础设施。
因此在部分语境中,又有人称为 AI Infra 人工智能的基础设施,但是因为基础设施更偏向于底层硬件、集群等内容,而 AI 系统是多的是强调让 AI 执行起来的系统体系结构,因此更愿意称包括软硬件的内容为 AI 系统。
传统本地部署时代,三大基础软件(数据库、操作系统、中间件)实现控制硬件交互、存储管理数据、网络通信调度等共性功能,抽象并隔绝底层硬件系统的复杂性,让上层应用开发者能够专注于业务逻辑和应用功能本身的创新实现。
云时代同理,形成了 IaaS、PaaS、SaaS 三层架构,其中 PaaS 层提供应用开发环境和基础的数据分析管理服务。类比来看,我们认为,进入 AI 时代也有承担类似功能的、连接算力和应用的基础设施中间层即 AI 系统,提供基础模型服务、赋能模型微调和应用开发。
开发者一般通过编程语言 Python 和 AI 框架(例如 PyTorch、MindSpore 等)API 编码和描述以上 AI 模型,声明训练作业和部署模型流程。由最开始 AlexNet 是作者直接通过 CUDA 实现网络模型,到目前有通过 Python 语言灵活和轻松调用的 AI 框架,到大家习惯使用 HuggingFace 社区提供的组件进行大语言模型进行微调和推理,背后是系统工程师贴合实际需求不断研发新的工具,并推动深度学习生产力提升的结果。
但是这些 AI 编程语言和 AI 框架应对自动化机器学习、强化学习等多样执行方式,以及细分的应用场景显得越来越低效,不够灵活,需要用户自定义一些特殊优化,没有好的工具和系统的支撑,这些问题一定程度上会拖慢和阻碍算法工程师研发效率,影响算法本身的发展。
因此,目前开源社区中也不断涌现针对特定应用领域而设计的框架和工具,例如 Hugging Face 提供语言预训练模型 ModelZoo 和社区,FairSeq 自然语言处理中的序列到序列模型开发套件和MMDetection 物体检测套件,针对自动化机器学习设计的 NNI 加速库等,进而针对特定领域模型应用负载进行定制化设计和性能优化,并提供更简化的接口和应用体验。
由于不同领域的输入数据格式不同,预测输出结果不同,数据获取方式不同,造成模型结构和训练方式产生非常多样的需求,各家公司和组织不断研发新的针对特定领域的 AI 框架或上层应用接口封装,以支持特定领域数据科学家快速验证和实现新的 AI 想法,工程化部署和批量训练成熟的模型。如 Meta 推出的 Torch 演化到 PyTorch,谷歌 TensorFlow 及新推出的 JAX,基于 PyTorch 构建的 HuggingFace 等。AI 开发工具与 AI 框架本身也是随着用户的模型构建与程序编写与部署需求不断演进。
这其中快速获取用户的原因,有一些是其提供了针对应用场景非常简化的模型操作,并提供模型中心快速微调相应的模型,有一些是因为其能支持大模型训练或者有特定领域模型结构的系统优化。
AI 系统自身设计挑战较高(如更大的规模、更大的超参数搜索空间、更复杂的模型结构设计),人工智能的代表性开发框架 PyTorch 是 Meta 开发,后续贡献给 Linux 开源基金会;TensorFlow 是谷歌(谷歌)从 2016 年开源;华为(HUAWEI)为了避免美国全面封锁 AI 领域推出自研的 AI 框架 MindSpore。
硬件厂商围绕其设计了大量的专有 AI 芯片(如 GPU、TPU、NPU 等)来加速 AI 算法的训练微调和部署推理,微软(Microsoft)、亚马逊(Amazon)、特斯拉(Tesla)等公司早已部署数以万计的 GPU 用于 AI 模型的训练,OpenAI 等公司不断挑战更大规模的分布式模型训练。
英伟达(NVIDIA)、华为(HUAWEI)、英特尔(Intel)、谷歌(谷歌)等公司不断根据 AI 模型特点设计新的 AI 加速器芯片和对应的 AI 加速模块,如张量核 Tensor Core、脉动阵列等提供更大算力 AI 加速器。
上述从顶层的 AI 算法应用、AI 框架(包括训练和推理)到底层 AI 编译器,和对 AI 算法应用进行加速的 AI 芯片。所介绍的 AI 全栈相关内容中则是指 AI 系统(AI System),是围绕深度学习而衍生和设计的系统,因此也叫做深度学习系统(Deep Learning System)。
但是 AI 系统很多也可以应用于机器学习算法或使用机器学习算法,例如自动化机器学习、集群管理系统等。同时这些系统设计方法具有一定的通用性,有些继承自机器学习系统或者可以借鉴用于机器学习系统。即使作为系统工程师,也需要密切关注算法和应用的演进,才能紧跟潮流设计出贴合应用实际的工具与系统。
深度学习系统的设计目标可以总结为以下几个部分。
了解完 AI 系统设计的宏观目标,可以进一步了解,当前在人工智能的大生态环境中 AI 系统的技术栈是如何构成的,整个技术栈中 AI 系统的各处于哪个抽象层次,互相之间的关系是什么。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。