Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习工程师31门课程(视频):从新手到专业

机器学习工程师31门课程(视频):从新手到专业

作者头像
机器学习AI算法工程
发布于 2018-03-09 02:29:35
发布于 2018-03-09 02:29:35
9020
举报

机器学习不仅仅是模型

产生这个问题的原因就是所有人都以为机器学习的模型就是机器学习本身,以为对那些个算法理解了就是机器学习的大牛了,但实际上完全不是这样的。

模型是谁在玩呢?模型是科学家发明出来的, 是各个大公司的各个科学家,研究员发明出来的,这个发明出来是会出论文的,是他们用来虐我们的智商的,一般情况下,你发明不了模型吧(如果可以,可以不要往下看了,你可以走学术那条路)?你修改不了模型吧?

所以说,学会了模型,只是刚刚刚刚入门,甚至还算不上入门吧

那各个公司的那么多算法工程师在干嘛呢?我们以一个搜索排序的算法工程师为例,他们在做甚呢?他们在

观察数据--->找特征--->设计算法--->算法验证--->洗数据--->工程化--->上线看效果--->goto 观察数据

而且一个成熟的系统中,一般模型已经大概确定了,如果效果不是特别不好不会换模型,比如一个公司的搜索排序系统用了机器学习的逻辑回归模型,你要改成别的模型一般不太可能,那么只能做一些特征上的补充。

好,我们通过这个流程来看看一个机器学习的算法工程师到底还要什么能力。

观察数据

小明每天就在工位上看数据,查数据,看表格,画曲线,发现像销量,收藏,点击等等这种能想到的特征早就被用了,就这么耗了三个月,没有任何进展,人都崩溃了,来了这么久,机器学习代码毛都没看到呢。

第四个月,他发现一点问题,他发现有些商品,评论什么的都挺好,感觉产品质量也不错,但就是销量上不去,所以老排后面,于是,他把这些评论都是五星,但是销量比较差的商品滤出来了,想看看他们有什么共性。

观察数据阶段,你说要什么能力?呵呵,只能告诉你,需要数据敏感性,其实也就是告诉你需要全面的能力,需要经验,需要产品经理的能力。

除了这些,你还需要能随手编脚本代码的能力,遇到有些数据需要初步处理,可能需要随手编代码处理,而且编的要快,因为这些代码可能就用一两次就不用了,所以需要比较强大的脚本语言能力,那么python至少要熟悉吧,shell要会吧。

找特征

数据观察下来发现了问题,现在要找特征了,要找特征,也就是找什么因素导致销量上不去的,首先,需要想象力,然后去验证你的想象力。

小明的想象力爆棚,即便这样,也搞了一个月才发现这些个商品有个共同特征,那就是图片都比较烂,让人一看就不想点。卧槽,要是能把图片质量加入到排序因素里面的话,是不是有奇效呢?图片质量作为特征,这之前可没人做过,终于找到一个特征了。

所以在这一阶段,毕竟大家的想象力都是有限的,更多的是经验值,才能找到符合当前场景的特征。

设计算法

特征是找到了,但怎么把这个特征加到排序模型里面去呢?图片好不好,有多好,这些机器怎么理解呢?如果不能把图片质量变成一个数学上的向量,那永远都无法加入到排序模型里面去。

这一阶段是真正考验算法工程师的地方了,那就是将特征向量化,小明观察到越好看的图像往往颜色变化更多,而质量差的图片往往颜色没什么变化,于是他想到一种办法,先把图像数据进行傅里叶变换,变成频域的数据,根据傅里叶变换的性质,高频部分的幅度高表示图像的颜色变化很明显,如果低频部分高,表示颜色变化不明显,这和观察到的图像信息基本能匹配上,这样一副图像的好坏,就可以用傅里叶变换后高频部分的幅度表示了,然后在做一些归一化的变化,就把图像向量化了,向量化以后就可以加入到排序模型去了。

这一步,你可能会用到你学习的机器学习模型,但肯定只占了一小部分,大部分情况需要你根据当前场景自己建立一个数学模型,而不是机器学习模型,你说这一阶段需要什么技能?虽然我这里举的例子比较极端,但是数学抽象能力,数学建模能力和数学工具的熟练使用是必不可少的,并且同样需要较强的编程能力,这已不是上一步的脚本能力,是实打实的计算机算法编程能力了。

算法验证

算法是设计好了,还要设计一个算法的离线验证方法来证明给你的老大看说我的算法是有效果的,不然哪那么多机会让你到线上去试啊,这一步也是各种综合能力的组合,关键是在这一步上,你要用一种通俗的语言从理论上说服你的老大,这是一种什么能力?强大的语言表达能力。

除了这个你还需要设计出一个上线以后的AB测试方案,能够很好的测试出你的算法是否真的有效。

洗数据

特征找到了,算法也设计得差不多能体现特征了,体力活来了,那就是洗数据,这是算法工程师的必修课,数据不是你想要什么样子他就长得什么样子的,所以要把数据变成你想要的样子,然后去掉无效的数据可是个体力活。

像上面这个例子,首先可能大家的图片大小都不一样,要变成一个尺寸才好进行变换,有些商品有多个图片,可能需要找出质量最好的再处理等等等等。

这一阶段首先也是要脚本语言处理能力,而且还需要掌握一些数据处理工具的使用,关键还要有足够的耐性和信心,当然,必不可少的是优秀的编程能力。

工程化

好了,前面的坑你全跨过来了,到了这一步了,呵呵,算法设计完了,数据也准备好了,估计半年过去了,那赶快放到线上去吧,你以为拿着一堆脚本就能上线了啊,得考虑工程化了,如果把你的算法嵌入到原有系统中,如果保证你的算法的效率,别一跑跑一天,代码的健壮性也要考虑啊,如果是在线算法,还得考虑性能,别把内存干没了。

这一步,你才真正的用上了你上面学的机器学习的hadoop,spark工具,看了上面说的,要完成工程化这一步,得有什么能力不用我说了吧,这是一个标准的软件开发工程师的必要技能,还是高级开发工程师哦。

上线看效果

所有的都做完了,前前后后10个月了,终于可以上线了,好了,真正的考验来了,看看上线的效果呗,产品经理说,做个AB测试吧,结果呵呵了,点击率降低了,小明啊!这10个月忙活下来点击率还下降了???老板还不把你骂死,所以,你必须有强大的抗打击能力。

呵呵,赶快下线吧,从头看看哪里出了问题,又花了一个月修改了算法,重新上线,恩,这次不错,点击率提高了0.2个百分点,继续努力吧,看看还有没有什么可以挖掘的,于是,你就goto到了看数据的那一步。

别看这0.2,大的数据集合下,提高0.2已经是非常不错的提高了,所以花这么多钱,养算法工程师,要是一年能出几次0.2,那就是真值了。

让我们总结一下

上面这么多的过程,靠一个人全部完成确实有点困难,我说的有点夸张,中间有些步骤是有人配合的,观察数据的时候有产品经理配合你,洗数据的时候有数据工程师配合你,工程化的时候有系统工程师配合你,但是作为机器学习的算法工程师,整个过程你都得能hold得住啊,所以即便是你一个人应该也要能完成整个流程才行。

这只是一个标准的算法工程师应该具备的能力,当然我这里是以搜索算法举例的,其他的算法工程师也差不太多,总跑不过上面几个过程,当然,你要是牛人,能根据场景修改这个机器学习的模型,甚至自己能想个模型,那就更厉害了。

好,我们把上面的重点标记的部分取出来汇总一下,让我们看看一个算法工程师需要具备哪些技能:

  • 数据敏感性,观察力
  • 数学抽象能力,数学建模能力和数学工具的熟练使用的能力
  • 能随手编脚本代码的能力,强大的计算机算法编程能力,高级开发工程师的素质
  • 想象力,耐性和信心,较强的语言表达能力,抗打击能力
  • 然后,还有很关键的一点,你需要很聪明。

当然,你如果能做到以上那么几点,基本上也会很聪明了,如果真能做到这样,反而那些机器学习的模型,理论和工具就显得不那么重要了,因为那些也只是知识和工具,随时都可以学嘛。

你说,这些是靠看几篇博客,看几本书,上几次课就能具备的么??

当然,我们这里讨论的是一般情况,如果你一心就是做研究的话,那么需要把上述技能熟练度再提高一个量级。

最后,正在学习机器学习,励志做算法工程师的你,准备好踏这些坑了么??

很多的工程师都想转行到这个岗位。本文根据 Coursera 上面的课程,列了一个从新手到专业工程师的学习计划,提供给大家学习。以下是具体的学习路径:

以下课程均有课程链接

https://www.jianshu.com/p/32b21d32663c

机器学习工程师必修课(6门课程)

  • 课程 1:Algorithmic Toolbox(共35小时)
  • 课程 2:Data Structures(共35小时)
  • 课程 3:Algorithms on Graphs(共20小时)
  • 课程 4:Algorithms on Strings(共23小时)
  • 课程 5:Advanced Algorithms and Complexity(共43小时)
  • 课程 6:Genome Assembly Programming Challenge(共19小时)

初级机器学习工程师(6门课程)

  • 课程 1 :Machine Learning(共45小时)
  • 课程 2 :Introduction to Data Science in Python(共21小时)
  • 课程 3 :Applied Plotting, Charting & Data Representation in Python(共15小时)
  • 课程 4 :Applied Machine Learning in Python(共22小时)
  • 课程 5 :Applied Text Mining in Python(共16小时)
  • 课程 6 :Applied Social Network Analysis in Python(共17小时)

中级机器学习工程师(4门课程)

  • 课程 1 :Machine Learning Foundations: A Case Study Approach(共21小时)
  • 课程 2 :Machine Learning: Regression(共26小时)
  • 课程 3 :Machine Learning: Classification(共23小时)
  • 课程 4 :Machine Learning: Clustering & Retrieval(共21小时)

高级机器学习工程师(3门课程)

  • 课程 1 :Neural Networks and Deep Learning(共5小时)
  • 课程 2 :Improving Deep Neural Networks(共5小时)
  • 课程 3 :Structuring Machine Learning Projects(共5小时)

本文来自 微信公众号 datadw 【大数据挖掘DT数据分析

机器学习工程师方向选择(12门课程)

  • 课程 1 :Google Cloud Platform Big Data and Machine Learning Fundamentals(共8小时)
  • 课程 2 :Leveraging Unstructured Data with Cloud Dataproc on Google Cloud Platform(共5小时)
  • 课程 3 :Serverless Data Analysis with Google BigQuery and Cloud Dataflow(共6小时)
  • 课程 4 :Serverless Machine Learning with Tensorflow on Google Cloud Platform(共8小时)
  • 课程 5 :Building Resilient Streaming Systems on Google Cloud Platform(共5小时)
  • 课程 6 :Introduction to Recommender Systems: Non-Personalized and Content-Based(共14小时)
  • 课程 7 :Nearest Neighbor Collaborative Filtering(共11小时)
  • 课程 8 :Recommender Systems: Evaluation and Metrics(共8小时)
  • 课程 9 :Matrix Factorization and Advanced Techniques(共7小时)
  • 课程 10 :Probabilistic Graphical Models 1: Representation(共27小时)
  • 课程 11 :Probabilistic Graphical Models 2: Inference(共22小时)
  • 课程 12 :Probabilistic Graphical Models 3: Learning(共22小时)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-03-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据挖掘DT数据分析 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
一文带你了解机器人是如何通过视觉实现目标跟踪的!
视觉跟踪技术是计算机视觉领域(人工智能分支)的一个重要课题,有着重要的研究意义。在军事制导、视频监控、机器人视觉导航、人机交互、以及医疗诊断等许多方面有着广泛的应用前景。随着研究人员不断地深入研究,视觉目标跟踪在近十几年里有了突破性的进展,使得视觉跟踪算法不仅仅局限于传统的机器学习方法,更是结合了近些年人工智能热潮—深度学习(神经网络)和相关滤波器等方法。本文主要介绍以下几点:什么是视觉目标跟踪(单目标跟踪)、单目标跟踪的基本结构(框架),目标跟踪存在的挑战,目标跟踪经典相关方法及研究趋势等。
一点人工一点智能
2023/02/25
1K0
一文带你了解机器人是如何通过视觉实现目标跟踪的!
传输丰富的特征层次结构以实现稳健的视觉跟踪
论文地址:https://arxiv.org/pdf/1501.04587.pdf
代码的路
2022/08/23
1.6K0
传输丰富的特征层次结构以实现稳健的视觉跟踪
详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割
译者 | 王柯凝 【 AI 科技大本营导读】目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学 ),生物学(神经科学)和心理学(认知科学)等等。许多科学家认为,计算机视觉为人工智能的发展开拓了道路。 那么什么是计算机视觉呢? 这里给出了几个比较严谨的定义: ✦ “对图像中的客观对象构建明确而有意义的描述”(Ballard&B
AI科技大本营
2018/04/26
12.4K0
详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割
CVPR 2023--CiteTracker:关联图像和文本以进行视觉跟踪
现有的视觉跟踪方法通常以图像块作为目标的参考来进行跟踪。然而,单个图像块无法提供目标对象的完整和精确的概念,因为图像的抽象能力有限并且可能是模糊的,这使得跟踪变化剧烈的目标变得困难。在本文中,我们提出了 CiteTracker,通过连接图像和文本来增强视觉跟踪中的目标建模和推理。具体来说,我们开发了一个文本生成模块,将目标图像块转换为包含其类别和属性信息的描述性文本,为目标提供全面的参考点。此外,还设计了动态描述模块来适应目标变化,以实现更有效的目标表示。然后,我们使用基于注意力的相关模块将目标描述和搜索图像关联起来,以生成目标状态参考的相关特征。在五个不同的数据集上进行了广泛的实验来评估所提出的算法,并且相对于最先进的方法的良好性能证明了所提出的跟踪方法的有效性。源代码和训练模型将在 https://github.com/NorahGreen/CiteTracker 发布。
AiCharm
2023/09/27
1.8K0
什么是计算机视觉,计算机视觉的主要任务及应用
研究者为了让机器像人一样“看懂”图像,研究了人类视觉系统,该系统包含眼球(接收光信号)、视网膜(光信号转换为电信号,传输到大脑)、大脑皮层(提取电信号中的有效特征,引导人做出反应)。为了让机器模拟人类视觉系统,研究者用摄像头模拟“眼球”获得图像信息;用数字图像处理模拟“视网膜”将模拟图像变成数字图像,让计算机能识别;用计算机视觉模拟“大脑皮层”,设计算法提取图像特征,做识别检测等任务。机器模拟人类视觉系统便是机器视觉,也称计算机视觉(Computer Vision, CV),是在解决机器如何‘看’的问题。
zhangjiqun
2024/12/14
8470
什么是计算机视觉,计算机视觉的主要任务及应用
基于视觉跟踪与自主导航的移动机器人目标跟随系统
针对在移动机器人跟随目标的过程中目标消失的情景,提出了基于视觉跟踪与自主导航的机器人目标跟随系统。将机器人跟随问题分为目标在机器人视野内时的常规跟随和目标消失后的自主导航两种情况。
一点人工一点智能
2024/01/19
3.5K0
基于视觉跟踪与自主导航的移动机器人目标跟随系统
这5种计算机视觉技术,刷新你的世界观
计算机视觉是目前深度学习领域最热门的研究领域之一。它位于许多学术科目的交汇点,如计算机科学(图形学,算法,理论,系统,建筑),数学(信息检索,机器学习),工程学(机器人学,语音,自然语言处理,图像处理),物理学(光学) ,生物学(神经科学)和心理学(认知科学)。由于计算机视觉代表了对视觉环境及其背景的相对理解,许多科学家认为,该领域由于其跨域掌握为人工智能铺平了道路。
AI研习社
2018/12/19
6570
这5种计算机视觉技术,刷新你的世界观
Python3 OpenCV4 计算机视觉学习手册:6~11
与人眼和大脑相似,OpenCV 可以检测图像的主要特征并将其提取到所谓的图像描述符中。 然后可以将这些特征用作数据库,从而启用基于图像的搜索。 此外,我们可以使用关键点将图像拼接在一起并组成更大的图像。 (请考虑将许多图片组合在一起以形成 360° 全景图。)
ApacheCN_飞龙
2023/04/27
4.4K0
Python3 OpenCV4 计算机视觉学习手册:6~11
计算机视觉中,目前有哪些经典的目标跟踪算法?
相信很多来这里的人和我第一次到这里一样,都是想找一种比较好的目标跟踪算法,或者想对目标跟踪这个领域有比较深入的了解,虽然这个问题是经典目标跟踪算法,但事实上,可能我们并不需要那些曾经辉煌但已被拍在沙滩上的tracker(目标跟踪算法),而是那些即将成为经典的,或者就目前来说最好用、速度和性能都看的过去tracker。我们比较关注目标跟踪中的相关滤波方向,接下来我帮您介绍下我们所认识的目标跟踪,尤其是相关滤波类方法,分享一些我们认为比较好的算法,顺便谈谈我的看法。
小白学视觉
2022/09/28
5790
CVPR:深度无监督跟踪
本文提出了一种无监督的视觉跟踪方法。与使用大量带注释数据进行监督学习的现有方法不同,本文的CNN模型是在无监督的大规模无标签视频上进行训练的。动机是,强大的跟踪器在向前和向后预测中均应有效(即,跟踪器可以在连续帧中向前定位目标对象,并在第一个帧中回溯到其初始位置)。在Siameses相关过滤器网络上构建框架,该网络使用未标记的原始视频进行训练。同时提出了一种多帧验证方法和一种对成本敏感的损失,以促进无监督学习。由于没有bells & whistles,本文的无监督跟踪器可达到完全受监督的在训练过程中需要完整且准确的标签的跟踪器的基线精度。此外,无监督框架在利用未标记或标记较弱的数据以进一步提高跟踪准确性方面具有潜力。
用户2293520
2020/07/25
1.3K0
CVPR:深度无监督跟踪
学习用于视觉跟踪的深度紧凑图像表示
在本文中,我们研究了跟踪可能非常复杂背景的视频中运动物体轨迹的挑战性问题。与大多数仅在线学习跟踪对象外观的现有跟踪器相比,我们采用不同的方法,受深度学习架构的最新进展的启发,更加强调(无监督)特征学习问题。具体来说,通过使用辅助自然图像,我们离线训练堆叠去噪自动编码器,以学习对变化更加鲁棒的通用图像特征。然后是从离线培训到在线跟踪过程的知识转移。在线跟踪涉及分类神经网络,该分类神经网络由训练的自动编码器的编码器部分构成,作为特征提取器和附加分类层。可以进一步调整特征提取器和分类器以适应移动物体的外观变化。与一些具有挑战性的基准视频序列的最先进的跟踪器进行比较表明,当我们的跟踪器的MATLAB实现与适度的图形处理一起使用时,我们的深度学习跟踪器更准确,同时保持低计算成本和实时性能单位(GPU)。
代码的路
2022/08/23
1.4K0
学习用于视觉跟踪的深度紧凑图像表示
SiamRPN++:深层网络连体视觉跟踪的演变
程序:https://github.com/PengBoXiangShang/SiamRPN_plus_plus_PyTorch
代码的路
2022/08/01
8620
SiamRPN++:深层网络连体视觉跟踪的演变
计算机视觉中,目前有哪些经典的目标跟踪算法?
【新智元导读】这篇文章将非常详细地介绍计算机视觉领域中的目标跟踪,尤其是相关滤波类方法,分享一些作者认为比较好的算法。 相信很多来这里的人和我第一次到这里一样,都是想找一种比较好的目标跟踪算法,或者想对目标跟踪这个领域有比较深入的了解,虽然这个问题是经典目标跟踪算法,但事实上,可能我们并不需要那些曾经辉煌但已被拍在沙滩上的tracker(目标跟踪算法),而是那些即将成为经典的,或者就目前来说最好用、速度和性能都看的过去tracker。我比较关注目标跟踪中的相关滤波方向,接下来我帮您介绍下我所认识的目标跟踪,
新智元
2018/03/21
2K0
计算机视觉中,目前有哪些经典的目标跟踪算法?
借势AI系列:计算机眼中的图像:理解与处理【入门指南指导】
在计算机视觉领域,图像是计算机感知世界的窗口。计算机通过图像处理算法将图像转化为可以理解和分析的信息。这一过程涉及多个阶段,包括图像预处理、特征提取、对象检测和图像分析等。OpenCV(Open Source Computer Vision Library)是一个强大的开源库,广泛用于计算机视觉和图像处理任务。本文将探讨计算机如何“看到”图像,并通过OpenCV代码示例展示如何实现这些技术。
一键难忘
2024/10/31
900
【AI白身境】一文览尽计算机视觉研究方向
图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务,从最开始比较简单的10分类的灰度图像手写数字识别mnist,到后来更大一点的10分类的cifar10和100分类的cifar100,到后来的imagenet,图像分类任务伴随着数据库的增长,一步一步提升到了今天的水平。
用户1508658
2019/07/26
8260
【AI白身境】一文览尽计算机视觉研究方向
精通 TensorFlow 2.x 计算机视觉:第一部分
在本节中,您将加深对理论的理解,并学习有关卷积神经网络在图像处理中的应用的动手技术。 您将学习关键概念,例如图像过滤,特征映射,边缘检测,卷积运算,激活函数,以及与图像分类和对象检测有关的全连接和 softmax 层的使用。 本章提供了许多使用 TensorFlow,Keras 和 OpenCV 的端到端​​计算机视觉管道的动手示例。 从这些章节中获得的最重要的学习是发展对不同卷积运算背后的理解和直觉-图像如何通过卷积神经网络的不同层进行转换。
ApacheCN_飞龙
2023/04/27
1.3K0
精通 TensorFlow 2.x 计算机视觉:第一部分
从零到一学习计算机视觉:朋友圈爆款背后的计算机视觉技术与应用 | 公开课笔记
分享人 | 叶聪(腾讯云 AI 和大数据中心高级研发工程师) 整 理 | Leo 出 品 | 人工智能头条(公众号ID:AI_Thinker) 刚刚过去的五四青年节,你的朋友圈是否被这样的民国风照片刷屏?用户只需要在 H5 页面上提交自己的头像照片,就可以自动生成诸如此类风格的人脸比对照片,简洁操作的背后离不开计算机视觉技术和腾讯云技术的支持。 那么这个爆款应用的背后用到了哪些计算机视觉技术?掌握这些技术需要通过哪些学习路径? 5 月 17 日,人工智能头条邀请到腾讯云 AI 和大数据中心高级研
用户1737318
2018/06/05
7220
使用计算机视觉实战项目精通 OpenCV:6~8
非刚性人脸跟踪是视频流每一帧中一组准密集的人脸特征的估计,这是一个难题,现代方法从许多相关领域借鉴了思想,包括计算机视觉,计算几何 ,机器学习和图像处理。 这里的非刚性指的是以下事实:人脸特征之间的相对距离在面部表情和整个人群之间变化,并且不同于人脸检测和跟踪,后者仅旨在在每个帧中查找面部的位置,而不是配置人脸特征。 非刚性人脸跟踪是一个流行的研究主题,已经有二十多年的历史了,但是直到最近,各种方法才变得足够鲁棒,处理器也足够快,这使得构建商业应用成为可能。
ApacheCN_飞龙
2023/04/27
1.5K0
使用计算机视觉实战项目精通 OpenCV:6~8
[计算机视觉论文速递] 2018-03-30
通知:这篇文章有9篇论文速递信息,涉及目标检测、图像分割、目标跟踪、三维重建和立体匹配等方向 PS:由于时间问题,本文没有附上相应图示,还请见谅 前文回顾 TensorFlow和深度学习入门教程 YOLOv3:你一定不能错过 你现在应该阅读的7本最好的深度学习书籍 目标检测 [1]《Optimizing the Trade-off between Single-Stage and Two-Stage Object Detectors using Image Difficulty Prediction》
Amusi
2018/04/12
8320
OpenCV3 和 Qt5 计算机视觉:6~10
它始终以未经处理的原始图像开始,这些图像是使用智能手机,网络摄像头,DSLR 相机,或者简而言之,是能够拍摄和记录图像数据的任何设备拍摄的。 但是,通常以清晰或模糊结束。 明亮,黑暗或平衡; 黑白或彩色; 以及同一图像数据的许多其他不同表示形式。 这可能是计算机视觉算法中的第一步(也是最重要的步骤之一),通常被称为图像处理(目前,让我们忘记一个事实,有时计算机视觉和图像处理可互换使用;这是历史专家的讨论。 当然,您可以在任何计算机视觉过程的中间或最后阶段进行图像处理,但是通常,用大多数现有设备记录的任何照片或视频首先都要经过某种图像处理算法。 这些算法中的某些仅用于转换图像格式,某些用于调整颜色,消除噪点,还有很多我们无法开始命名。 OpenCV 框架提供了大量功能来处理各种图像处理任务,例如图像过滤,几何变换,绘图,处理不同的色彩空间,图像直方图等,这将是本章的重点。
ApacheCN_飞龙
2023/04/27
2.7K0
推荐阅读
相关推荐
一文带你了解机器人是如何通过视觉实现目标跟踪的!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档