本文提出了一种新的上下文感知推荐模型——卷积矩阵因式分解(convmf),将卷积神经网络(cnn)与概率矩阵因式分解(pmf)相结合。因此,convmf捕获了文档的上下文信息,进一步提高了评级预测的准确性。我们对三个现实数据集的广泛评估表明,即使在评级数据非常稀疏的情况下,convmf仍显著优于最先进的推荐模型。我们还证明convmf成功地捕获了文档中单词的细微上下文差异。
完整复现源码获取方式:
关注微信公众号 datayx 然后回复 推荐系统 即可获取。
convmf-左边是convmf的概率图模型,它集成了概率矩阵分解(pmf)模型和卷积神经网络(cnn)模型,右边是cnn模型利用项目描述文档的详细架构。从CNN模型中获得的文档潜在向量被用作项目变量(V)的高斯分布平均值,它在CNN和PMF之间起着重要的桥梁作用,有助于全面分析描述文档和评级。详情请参阅论文http://dl.acm.org/citation.cfm?id=2959165