前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >聊聊flink Table Schema的定义

聊聊flink Table Schema的定义

原创
作者头像
code4it
发布2019-02-03 11:52:49
3.4K0
发布2019-02-03 11:52:49
举报
文章被收录于专栏:码匠的流水账

本文主要研究一下flink Table Schema的定义

实例

定义字段及类型

代码语言:javascript
复制
.withSchema(
  new Schema()
    .field("MyField1", Types.INT)     // required: specify the fields of the table (in this order)
    .field("MyField2", Types.STRING)
    .field("MyField3", Types.BOOLEAN)
)
  • 通过field定义字段名及字段类型

定义字段属性

代码语言:javascript
复制
.withSchema(
  new Schema()
    .field("MyField1", Types.SQL_TIMESTAMP)
      .proctime()      // optional: declares this field as a processing-time attribute
    .field("MyField2", Types.SQL_TIMESTAMP)
      .rowtime(...)    // optional: declares this field as a event-time attribute
    .field("MyField3", Types.BOOLEAN)
      .from("mf3")     // optional: original field in the input that is referenced/aliased by this field
)
  • 通过proctime定义processing-time,通过rowtime定义event-time,通过from定义引用或别名

定义Rowtime属性

代码语言:javascript
复制
// Converts an existing LONG or SQL_TIMESTAMP field in the input into the rowtime attribute.
.rowtime(
  new Rowtime()
    .timestampsFromField("ts_field")    // required: original field name in the input
)
​
// Converts the assigned timestamps from a DataStream API record into the rowtime attribute
// and thus preserves the assigned timestamps from the source.
// This requires a source that assigns timestamps (e.g., Kafka 0.10+).
.rowtime(
  new Rowtime()
    .timestampsFromSource()
)
​
// Sets a custom timestamp extractor to be used for the rowtime attribute.
// The extractor must extend `org.apache.flink.table.sources.tsextractors.TimestampExtractor`.
.rowtime(
  new Rowtime()
    .timestampsFromExtractor(...)
)
  • 通过timestampsFromField、timestampsFromSource、timestampsFromExtractor定义rowtime

定义watermark strategies

代码语言:javascript
复制
// Sets a watermark strategy for ascending rowtime attributes. Emits a watermark of the maximum
// observed timestamp so far minus 1. Rows that have a timestamp equal to the max timestamp
// are not late.
.rowtime(
  new Rowtime()
    .watermarksPeriodicAscending()
)
​
// Sets a built-in watermark strategy for rowtime attributes which are out-of-order by a bounded time interval.
// Emits watermarks which are the maximum observed timestamp minus the specified delay.
.rowtime(
  new Rowtime()
    .watermarksPeriodicBounded(2000)    // delay in milliseconds
)
​
// Sets a built-in watermark strategy which indicates the watermarks should be preserved from the
// underlying DataStream API and thus preserves the assigned watermarks from the source.
.rowtime(
  new Rowtime()
    .watermarksFromSource()
)
  • 通过watermarksPeriodicAscending、watermarksPeriodicBounded、watermarksFromSource定义watermark strategies

StreamTableEnvironment.connect

flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/api/StreamTableEnvironment.scala

代码语言:javascript
复制
abstract class StreamTableEnvironment(
    private[flink] val execEnv: StreamExecutionEnvironment,
    config: TableConfig)
  extends TableEnvironment(config) {
​
  //......
​
  def connect(connectorDescriptor: ConnectorDescriptor): StreamTableDescriptor = {
    new StreamTableDescriptor(this, connectorDescriptor)
  }
​
  //......
}
  • StreamTableEnvironment的connect方法创建StreamTableDescriptor

StreamTableDescriptor

flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/descriptors/StreamTableDescriptor.scala

代码语言:javascript
复制
class StreamTableDescriptor(
    tableEnv: StreamTableEnvironment,
    connectorDescriptor: ConnectorDescriptor)
  extends ConnectTableDescriptor[StreamTableDescriptor](
    tableEnv,
    connectorDescriptor)
  with StreamableDescriptor[StreamTableDescriptor] {
​
  //......
}
  • StreamTableDescriptor继承了ConnectTableDescriptor

ConnectTableDescriptor

flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/descriptors/ConnectTableDescriptor.scala

代码语言:javascript
复制
abstract class ConnectTableDescriptor[D <: ConnectTableDescriptor[D]](
    private val tableEnv: TableEnvironment,
    private val connectorDescriptor: ConnectorDescriptor)
  extends TableDescriptor
  with SchematicDescriptor[D]
  with RegistrableDescriptor { this: D =>
​
  private var formatDescriptor: Option[FormatDescriptor] = None
  private var schemaDescriptor: Option[Schema] = None
​
  /**
    * Searches for the specified table source, configures it accordingly, and registers it as
    * a table under the given name.
    *
    * @param name table name to be registered in the table environment
    */
  override def registerTableSource(name: String): Unit = {
    val tableSource = TableFactoryUtil.findAndCreateTableSource(tableEnv, this)
    tableEnv.registerTableSource(name, tableSource)
  }
​
  /**
    * Searches for the specified table sink, configures it accordingly, and registers it as
    * a table under the given name.
    *
    * @param name table name to be registered in the table environment
    */
  override def registerTableSink(name: String): Unit = {
    val tableSink = TableFactoryUtil.findAndCreateTableSink(tableEnv, this)
    tableEnv.registerTableSink(name, tableSink)
  }
​
  /**
    * Searches for the specified table source and sink, configures them accordingly, and registers
    * them as a table under the given name.
    *
    * @param name table name to be registered in the table environment
    */
  override def registerTableSourceAndSink(name: String): Unit = {
    registerTableSource(name)
    registerTableSink(name)
  }
​
  /**
    * Specifies the format that defines how to read data from a connector.
    */
  override def withFormat(format: FormatDescriptor): D = {
    formatDescriptor = Some(format)
    this
  }
​
  /**
    * Specifies the resulting table schema.
    */
  override def withSchema(schema: Schema): D = {
    schemaDescriptor = Some(schema)
    this
  }
​
  // ----------------------------------------------------------------------------------------------
​
  /**
    * Converts this descriptor into a set of properties.
    */
  override def toProperties: util.Map[String, String] = {
    val properties = new DescriptorProperties()
​
    // this performs only basic validation
    // more validation can only happen within a factory
    if (connectorDescriptor.isFormatNeeded && formatDescriptor.isEmpty) {
      throw new ValidationException(
        s"The connector '$connectorDescriptor' requires a format description.")
    } else if (!connectorDescriptor.isFormatNeeded && formatDescriptor.isDefined) {
      throw new ValidationException(
        s"The connector '$connectorDescriptor' does not require a format description " +
          s"but '${formatDescriptor.get}' found.")
    }
​
    properties.putProperties(connectorDescriptor.toProperties)
    formatDescriptor.foreach(d => properties.putProperties(d.toProperties))
    schemaDescriptor.foreach(d => properties.putProperties(d.toProperties))
​
    properties.asMap()
  }
}
  • ConnectTableDescriptor提供了withSchema方法,返回Schema

Schema

flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/descriptors/Schema.scala

代码语言:javascript
复制
class Schema extends Descriptor {
​
  // maps a field name to a list of properties that describe type, origin, and the time attribute
  private val tableSchema = mutable.LinkedHashMap[String, mutable.LinkedHashMap[String, String]]()
​
  private var lastField: Option[String] = None
​
  def schema(schema: TableSchema): Schema = {
    tableSchema.clear()
    lastField = None
    schema.getFieldNames.zip(schema.getFieldTypes).foreach { case (n, t) =>
      field(n, t)
    }
    this
  }
​
  def field(fieldName: String, fieldType: TypeInformation[_]): Schema = {
    field(fieldName, TypeStringUtils.writeTypeInfo(fieldType))
    this
  }
​
  def field(fieldName: String, fieldType: String): Schema = {
    if (tableSchema.contains(fieldName)) {
      throw new ValidationException(s"Duplicate field name $fieldName.")
    }
​
    val fieldProperties = mutable.LinkedHashMap[String, String]()
    fieldProperties += (SCHEMA_TYPE -> fieldType)
​
    tableSchema += (fieldName -> fieldProperties)
​
    lastField = Some(fieldName)
    this
  }
​
  def from(originFieldName: String): Schema = {
    lastField match {
      case None => throw new ValidationException("No field previously defined. Use field() before.")
      case Some(f) =>
        tableSchema(f) += (SCHEMA_FROM -> originFieldName)
        lastField = None
    }
    this
  }
​
  def proctime(): Schema = {
    lastField match {
      case None => throw new ValidationException("No field defined previously. Use field() before.")
      case Some(f) =>
        tableSchema(f) += (SCHEMA_PROCTIME -> "true")
        lastField = None
    }
    this
  }
​
  def rowtime(rowtime: Rowtime): Schema = {
    lastField match {
      case None => throw new ValidationException("No field defined previously. Use field() before.")
      case Some(f) =>
        tableSchema(f) ++= rowtime.toProperties.asScala
        lastField = None
    }
    this
  }
​
  final override def toProperties: util.Map[String, String] = {
    val properties = new DescriptorProperties()
    properties.putIndexedVariableProperties(
      SCHEMA,
      tableSchema.toSeq.map { case (name, props) =>
        (Map(SCHEMA_NAME -> name) ++ props).asJava
      }.asJava
    )
    properties.asMap()
  }
}
  • Schem提供了field、from、proctime、rowtime方法用于定义Schema的相关属性

Rowtime

flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/descriptors/Rowtime.scala

代码语言:javascript
复制
class Rowtime extends Descriptor {
​
  private var timestampExtractor: Option[TimestampExtractor] = None
  private var watermarkStrategy: Option[WatermarkStrategy] = None
​
  def timestampsFromField(fieldName: String): Rowtime = {
    timestampExtractor = Some(new ExistingField(fieldName))
    this
  }
​
  def timestampsFromSource(): Rowtime = {
    timestampExtractor = Some(new StreamRecordTimestamp)
    this
  }
​
  def timestampsFromExtractor(extractor: TimestampExtractor): Rowtime = {
    timestampExtractor = Some(extractor)
    this
  }
​
  def watermarksPeriodicAscending(): Rowtime = {
    watermarkStrategy = Some(new AscendingTimestamps)
    this
  }
​
  def watermarksPeriodicBounded(delay: Long): Rowtime = {
    watermarkStrategy = Some(new BoundedOutOfOrderTimestamps(delay))
    this
  }
​
  def watermarksFromSource(): Rowtime = {
    watermarkStrategy = Some(PreserveWatermarks.INSTANCE)
    this
  }
​
  def watermarksFromStrategy(strategy: WatermarkStrategy): Rowtime = {
    watermarkStrategy = Some(strategy)
    this
  }
​
  final override def toProperties: java.util.Map[String, String] = {
    val properties = new DescriptorProperties()
​
    timestampExtractor.foreach(normalizeTimestampExtractor(_)
      .foreach(e => properties.putString(e._1, e._2)))
    watermarkStrategy.foreach(normalizeWatermarkStrategy(_)
      .foreach(e => properties.putString(e._1, e._2)))
​
    properties.asMap()
  }
}
  • Rowtime提供了timestampsFromField、timestampsFromSource、timestampsFromExtractor方法用于定义timestamps;提供了watermarksPeriodicAscending、watermarksPeriodicBounded、watermarksFromSource、watermarksFromStrategy方法用于定义watermark strategies

小结

  • StreamTableEnvironment的connect方法创建StreamTableDescriptor;StreamTableDescriptor继承了ConnectTableDescriptor;ConnectTableDescriptor提供了withSchema方法,返回Schema
  • Schem提供了field、from、proctime、rowtime方法用于定义Schema的相关属性;通过proctime定义processing-time,通过rowtime定义event-time,通过from定义引用或别名
  • Rowtime提供了timestampsFromField、timestampsFromSource、timestampsFromExtractor方法用于定义timestamps;提供了watermarksPeriodicAscending、watermarksPeriodicBounded、watermarksFromSource、watermarksFromStrategy方法用于定义watermark strategies

doc

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实例
    • 定义字段及类型
      • 定义字段属性
        • 定义Rowtime属性
          • 定义watermark strategies
          • StreamTableEnvironment.connect
          • StreamTableDescriptor
          • ConnectTableDescriptor
          • Schema
          • Rowtime
          • 小结
          • doc
          相关产品与服务
          大数据
          全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档