文章来自Oldpan博客:https://cloud.tencent.com/developer/article/1150017
TensorFlow中在使用卷积层函数的时候有一个参数padding可以选择same或者vaild,具体可以看之前的这篇文章:https://cloud.tencent.com/developer/article/1150019 而在pytorch中,现在的版本(0.3.1)中还是没有这个功能的,现在我们要在pytorch中实现与TensorFlow相同功能的padding=’same’的操作。
首先需要说明一点,在pytorch中,如果你不指定padding的大小,在pytorch中默认的padding方式就是vaild。
我们用一段程序来演示一下pytorch中的vaild操作:
根据上图中的描述,我们首先定义一个长度为13的一维向量,然后用核大小为6,步长为5的一维卷积核对其进行卷积操作,由上图很容易看出输出为长度为2的数据(因为只进行了两次卷积操作,12和13被弃用了)。
>>> input = torch.FloatTensor([[[1,2,3,4,5,6,7,8,9,10,11,12,13]]])
>>> input
(0 ,.,.) =
1 2 3 4 5 6 7 8 9 10 11 12 13
[torch.FloatTensor of size 1x1x13] # 输入长度为13
conv = torch.nn.Conv1d(1,1,6,5) # 定义一维卷积核
>>> input.size()
>>> torch.Size([1, 1, 13])
>>> input = torch.autograd.Variable(input)
>>> input
Variable containing:
(0 ,.,.) =
1 2 3 4 5 6 7 8 9 10 11 12 13
[torch.FloatTensor of size 1x1x13]
>>> output = conv(input)
>>> output.size()
>>> torch.Size([1, 1, 2]) # 输出长度为2
由程序结果可以看到pytorch中的默认padding模式是vaild。
这里我们借用TensorFlow中的核心函数来模仿实现padding=same的效果。
def conv2d_same_padding(input, weight, bias=None, stride=1, padding=1, dilation=1, groups=1):
# 函数中padding参数可以无视,实际实现的是padding=same的效果
input_rows = input.size(2)
filter_rows = weight.size(2)
effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1
out_rows = (input_rows + stride[0] - 1) // stride[0]
padding_rows = max(0, (out_rows - 1) * stride[0] +
(filter_rows - 1) * dilation[0] + 1 - input_rows)
rows_odd = (padding_rows % 2 != 0)
padding_cols = max(0, (out_rows - 1) * stride[0] +
(filter_rows - 1) * dilation[0] + 1 - input_rows)
cols_odd = (padding_rows % 2 != 0)
if rows_odd or cols_odd:
input = pad(input, [0, int(cols_odd), 0, int(rows_odd)])
return F.conv2d(input, weight, bias, stride,
padding=(padding_rows // 2, padding_cols // 2),
dilation=dilation, groups=groups)
自定义这个函数后我们移植pytorch中的Conv2d函数,在其forward中将默认的conv2d函数改为我们的padding-same函数:
import torch.utils.data
from torch.nn import functional as F
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.functional import pad
from torch.nn.modules import Module
from torch.nn.modules.utils import _single, _pair, _triple
class _ConvNd(Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, transposed, output_padding, groups, bias):
super(_ConvNd, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
if transposed:
self.weight = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
else:
self.weight = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def __repr__(self):
s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
class Conv2d(_ConvNd):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(Conv2d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _pair(0), groups, bias)
# 修改这里的实现函数
def forward(self, input):
return conv2d_same_padding(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
然后在实际使用中,调用我们移植过来修改完的函数即可。
亲测可以实现,具体可以到我这个项目源码中查看:https://github.com/Oldpan/faceswap-pytorch
参考资料:
https://github.com/pytorch/pytorch/issues/3867
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/conv_ops.cc#L568-L605
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。