前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【高能】用PyMC3进行贝叶斯统计分析(代码+实例)

【高能】用PyMC3进行贝叶斯统计分析(代码+实例)

作者头像
量化投资与机器学习微信公众号
发布2018-01-30 10:33:16
4.4K0
发布2018-01-30 10:33:16
举报
文章被收录于专栏:量化投资与机器学习

问题类型1:参数估计

真实值是否等于X?

给出数据,对于参数,可能的值的概率分布是多少?

例子1:抛硬币问题

硬币扔了n次,正面朝上是h次。

参数问题

想知道 p 的可能性。给定 n 扔的次数和 h 正面朝上次数,p 的值很可能接近 0.5,比如说在 [0.48,0.52]?

说明

  • 参数的先验信念:p∼Uniform(0,1)
  • 似然函数:data∼Bernoulli(p)
代码语言:javascript
复制
import pymc3 as pmimport numpy.random as nprimport numpy as npimport matplotlib.pyplot as pltimport matplotlib as mplfrom collections import Counterimport seaborn as sns

sns.set_style('white')
sns.set_context('poster')

%load_ext autoreload
%autoreload 2%matplotlib inline
%config InlineBackend.figure_format = 'retina'import warnings
warnings.filterwarnings('ignore')from random import shuffle
total = 30n_heads = 11n_tails = total - n_heads
tosses = [1] * n_heads + [0] * n_tails
shuffle(tosses)

数据

代码语言:javascript
复制
def plot_coins():
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.bar(list(Counter(tosses).keys()), list(Counter(tosses).values()))
    ax.set_xticks([0, 1])
    ax.set_xticklabels(['tails', 'heads'])
    ax.set_ylim(0, 20)
    ax.set_yticks(np.arange(0, 21, 5))        return fig

fig = plot_coins()
plt.show()
代码语言:javascript
复制
# Context manager syntax. `coin_model` is **just** # a placeholderwith pm.Model() as coin_model: 
    # Distributions are PyMC3 objects.
    # Specify prior using Uniform object.
    p_prior = pm.Uniform('p', 0, 1)  

    # Specify likelihood using Bernoulli object.
    like = pm.Bernoulli('likelihood', p=p_prior, observed=tosses)     # "observed=data" is key
    # for likelihood.

MCMC Inference Button (TM)

代码语言:javascript
复制
with coin_model:        # don't worry about this:
    step = pm.Metropolis()            # focus on this, the Inference Button:
    coin_trace = pm.sample(2000, step=step)

结果

代码语言:javascript
复制
pm.traceplot(coin_trace)
plt.show()
代码语言:javascript
复制
pm.plot_posterior(coin_trace[100:], color='#87ceeb',       rope=[0.48, 0.52], point_estimate='mean', ref_val=0.5)
plt.show()
  • 95% 的 HPD包括 ROPE
  • 获取更多的数据!

模式

  1. 使用统计分布参数化问题
  2. 证明我们的模型结构
  3. 在PyMC3中编写模型,Inference ButtonTM
  4. 基于后验分布进行解释
  5. (可选) 新增信息,修改模型结构

例子2:化学活性问题

我有一个新开发的分子X; X在阻止流感方面的效果有多好?

实验

  • 测试X的浓度范围,测量流感活动
  • 计算 IC50:导致病毒复制率减半的X浓度。

数据

代码语言:javascript
复制
import numpy as np
chem_data = [(0.00080, 99),
(0.00800, 91),
(0.08000, 89),
(0.40000, 89),
(0.80000, 79),
(1.60000, 61),
(4.00000, 39),
(8.00000, 25),
(80.00000, 4)]import pandas as pd

chem_df = pd.DataFrame(chem_data)
chem_df.columns = ['concentration', 'activity']
chem_df['concentration_log'] = chem_df['concentration'].apply(lambda x:np.log10(x))# df.set_index('concentration', inplace=True)

参数问题

给出数据,化学品的IC50 值是多少, 以及其周围的不确定性?

说明

数据

代码语言:javascript
复制
def plot_chemical_data(log=True):
    fig = plt.figure(figsize=(10,6))
    ax = fig.add_subplot(1,1,1)       if log:
        ax.scatter(x=chem_df['concentration_log'], y=chem_df['activity'])
        ax.set_xlabel('log10(concentration (mM))', fontsize=20)    else:
        ax.scatter(x=chem_df['concentration'], y=chem_df['activity'])
        ax.set_xlabel('concentration (mM)', fontsize=20)
    ax.set_xticklabels([int(i) for i in ax.get_xticks()], fontsize=18)
    ax.set_yticklabels([int(i) for i in ax.get_yticks()], fontsize=18)

    plt.hlines(y=50, xmin=min(ax.get_xlim()), xmax=max(ax.get_xlim()), linestyles='--',)    return fig

fig = plot_chemical_data(log=True)
plt.show()
代码语言:javascript
复制
with pm.Model() as ic50_model:
    beta = pm.HalfNormal('beta', sd=100**2)
    ic50_log10 = pm.Flat('IC50_log10')  # Flat prior
    # MATH WITH DISTRIBUTION OBJECTS!
    measurements = beta / (1 + np.exp(chem_df['concentration_log'].values - ic50_log10))

    y_like = pm.Normal('y_like', mu=measurements, observed=chem_df['activity'])        # Deterministic transformations.
    ic50 = pm.Deterministic('IC50', np.power(10, ic50_log10))

MCMC Inference Button (TM)

代码语言:javascript
复制
with ic50_model:
    step = pm.Metropolis()
    ic50_trace = pm.sample(10000, step=step)
代码语言:javascript
复制
pm.traceplot(ic50_trace[2000:], varnames=['IC50_log10', 'IC50'])  # live: sample from step 2000 onwards.plt.show()

结果

代码语言:javascript
复制
pm.plot_posterior(ic50_trace[4000:], varnames=['IC50'], color='#87ceeb', point_estimate='mean')
plt.show()

该化学物质的IC50在约 [2mM,2.4mM](95%HPD)。 这是一种不好的化学物质。

问题类型2:实验组之间的比较

实验组和对照组的不同

例子1:药物IQ问题

药物治疗是否影响 IQ Scores

代码语言:javascript
复制
drug = [  99.,  110.,  107.,  104., 省略]
placebo = [  95.,  105.,  103.,   99., 省略]def ECDF(data):
    x = np.sort(data)
    y = np.cumsum(x) / np.sum(x)        return x, ydef plot_drug():
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    x_drug, y_drug = ECDF(drug)
    ax.plot(x_drug, y_drug, label='drug, n={0}'.format(len(drug)))
    x_placebo, y_placebo = ECDF(placebo)
    ax.plot(x_placebo, y_placebo, label='placebo, n={0}'.format(len(placebo)))
    ax.legend()
    ax.set_xlabel('IQ Score')
    ax.set_ylabel('Cumulative Frequency')
    ax.hlines(0.5, ax.get_xlim()[0], ax.get_xlim()[1], linestyle='--')        return fig
代码语言:javascript
复制
from scipy.stats import ttest_ind

ttest_ind(drug, placebo)
代码语言:javascript
复制
Ttest_indResult(statistic=2.2806701634329549, pvalue=0.025011500508647616)

实验

  • 随机将参与者分配给两个实验组:
    • +drug vs. -drug
  • 测量每个参与者的 IQ Scores

说明

代码语言:javascript
复制
fig = plot_drug()
plt.show()
代码语言:javascript
复制
y_vals = np.concatenate([drug, placebo])
labels = ['drug'] * len(drug) + ['placebo'] * len(placebo)

data = pd.DataFrame([y_vals, labels]).T
data.columns = ['IQ', 'treatment']with pm.Model() as kruschke_model:        # Focus on the use of Distribution Objects.
    # Linking Distribution Objects together is done by 
    # passing objects into other objects' parameters.
    mu_drug = pm.Normal('mu_drug', mu=0, sd=100**2)
    mu_placebo = pm.Normal('mu_placebo', mu=0, sd=100**2)
    sigma_drug = pm.HalfCauchy('sigma_drug', beta=100)
    sigma_placebo = pm.HalfCauchy('sigma_placebo', beta=100)
    nu = pm.Exponential('nu', lam=1/29) + 1

    drug_like = pm.StudentT('drug', nu=nu, mu=mu_drug, sd=sigma_drug, observed=drug)
    placebo_like = pm.StudentT('placebo', nu=nu, mu=mu_placebo, sd=sigma_placebo, observed=placebo)
    diff_means = pm.Deterministic('diff_means', mu_drug - mu_placebo)
    pooled_sd = pm.Deterministic('pooled_sd', np.sqrt(np.power(sigma_drug, 2) + np.power(sigma_placebo, 2) / 2))
    effect_size = pm.Deterministic('effect_size', diff_means / pooled_sd)

MCMC Inference Button (TM)

代码语言:javascript
复制
with kruschke_model:
    kruschke_trace = pm.sample(10000, step=pm.Metropolis())

结果

代码语言:javascript
复制
pm.traceplot(kruschke_trace[2000:], varnames=['mu_drug', 'mu_placebo'])
plt.show()
代码语言:javascript
复制
pm.plot_posterior(kruschke_trace[2000:], color='#87ceeb',varnames=['mu_drug', 'mu_placebo', 'diff_means'])
plt.show()
  • Difference in mean IQ:[0.5, 4.6]
  • 概率P值:0.02
代码语言:javascript
复制
def get_forestplot_line(ax, kind):
    widths = {'median': 2.8, 'iqr': 2.0, 'hpd': 1.0}        assert kind in widths.keys(), f('line kind must be one of {widths.keys()}')
    lines = []        for child in ax.get_children():                if isinstance(child, mpl.lines.Line2D) and np.allclose(child.get_lw(), widths[kind]):
            lines.append(child)        return lines    def adjust_forestplot_for_slides(ax):    
    for line in get_forestplot_line(ax, kind='median'):
        line.set_markersize(10)        for line in get_forestplot_line(ax, kind='iqr'):
        line.set_linewidth(5)            for line in get_forestplot_line(ax, kind='hpd'):
        line.set_linewidth(3)            return ax

pm.forestplot(kruschke_trace[2000:], varnames=['mu_drug', 'mu_placebo'])
ax = plt.gca()
ax = adjust_forestplot_for_slides(ax)
plt.show()

Forest plot:相同轴上后验分布的95%HPD(细线),IQR(较粗线)和中位数(点)。

代码语言:javascript
复制
def overlay_effect_size(ax):
    height = ax.get_ylim()[1] * 0.5
    ax.hlines(height, 0, 0.2, 'red', lw=5)
    ax.hlines(height, 0.2, 0.8, 'blue', lw=5)
    ax.hlines(height, 0.8, ax.get_xlim()[1], 'green', lw=5)

ax = pm.plot_posterior(kruschke_trace[2000:], varnames=['effect_size'],color='#87ceeb')[0]
overlay_effect_size(ax)
  • Effect size (Cohen's d, none to small, medium, large) could be anywhere from essentially nothing to large (95% HPD [0.0, 0.77])。
  • IQ改善0-4
  • 该药很可能无关紧要。
  • 没有生物学意义的证据。

例子2:手机消毒问题

两种常用的方法相比,我的“特别方法”能更好的消毒我的手机吗?

the experiment design

  • 随机将手机分配到六组之一:4“特别”方法+ 2“对照”方法。
  • count 形成的细菌菌落数,比较前后的计数。
代码语言:javascript
复制
renamed_treatments = dict()
renamed_treatments['FBM_2'] = 'FM1'renamed_treatments['bleachwipe'] = 'CTRL1'renamed_treatments['ethanol'] = 'CTRL2'renamed_treatments['kimwipe'] = 'FM2'renamed_treatments['phonesoap'] = 'FM3'renamed_treatments['quatricide'] = 'FM4'# Reload the data one more time.data = pd.read_csv('smartphone_sanitization_manuscript.csv', na_values=['#DIV/0!'])del data['perc_reduction colonies']# Exclude cellblaster datadata = data[data['treatment'] != 'CB30']
data = data[data['treatment'] != 'cellblaster']# Rename treatmentsdata['treatment'] = data['treatment'].apply(lambda x: renamed_treatments[x])# Sort the data according to the treatments.treatment_order = ['FM1', 'FM2', 'FM3', 'FM4', 'CTRL1', 'CTRL2']
data['treatment'] = data['treatment'].astype('category')
data['treatment'].cat.set_categories(treatment_order, inplace=True)
data = data.sort_values(['treatment']).reset_index(drop=True)# Encode the treatment index.data['treatment_idx'] = data['treatment'].apply(lambda x: treatment_order.index(x))
data['perc_change_colonies'] = (data['colonies_post'] - data['colonies_pre']) / data['colonies_pre']# # View the first 5 rows.# data.head(5)# # filter the data such that we have only PhoneSoap (PS-300) and Ethanol (ET)# data_filtered = data[(data['treatment'] == 'PS-300') | (data['treatment'] == 'QA')]# data_filtered = data_filtered[data_filtered['site'] == 'phone']# data_filtered.sample(10)

数据

代码语言:javascript
复制
def plot_colonies_data():
    fig = plt.figure(figsize=(10,5))
    ax1 = fig.add_subplot(2,1,1)
    sns.swarmplot(x='treatment', y='colonies_pre', data=data, ax=ax1)
    ax1.set_title('pre-treatment')
    ax1.set_xlabel('')
    ax1.set_ylabel('colonies')
    ax2 = fig.add_subplot(2,1,2)
    sns.swarmplot(x='treatment', y='colonies_post', data=data, ax=ax2)
    ax2.set_title('post-treatment')
    ax2.set_ylabel('colonies')
    ax2.set_ylim(ax1.get_ylim())
    plt.tight_layout()        return fig

fig = plot_colonies_data()
plt.show()

说明

计数是泊松分布。

代码语言:javascript
复制
with pm.Model() as poisson_estimation:

    mu_pre = pm.DiscreteUniform('pre_mus', lower=0, upper=10000,shape=len(treatment_order))
    pre_mus = mu_pre[data['treatment_idx'].values]  # fancy indexing!!
    pre_counts = pm.Poisson('pre_counts', mu=pre_mus,observed=data['colonies_pre'])

    mu_post = pm.DiscreteUniform('post_mus', lower=0, upper=10000,shape=len(treatment_order))
    post_mus = mu_post[data['treatment_idx'].values]  # fancy indexing!!
    post_counts = pm.Poisson('post_counts', mu=post_mus, observed=data['colonies_post'])

    perc_change = pm.Deterministic('perc_change', 100 * (mu_pre - mu_post) / mu_pre)

MCMC Inference Button (TM)

代码语言:javascript
复制
with poisson_estimation:
    poisson_trace = pm.sample(20000)
代码语言:javascript
复制
pm.traceplot(poisson_trace, varnames=['pre_mus', 'post_mus'])
plt.show()

结果

代码语言:javascript
复制
pm.forestplot(poisson_trace[10000:], varnames=['perc_change'], ylabels=treatment_order, xrange=[0, 110])
plt.xlabel('Percentage Reduction')

ax = plt.gca()
ax = adjust_forestplot_for_slides(ax)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-06-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量化投资与机器学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 例子1:抛硬币问题
    • 参数问题
      • 说明
        • 结果
        • 模式
        • 例子2:化学活性问题
          • 实验
            • 数据
              • 参数问题
                • 说明
                  • 数据
                    • MCMC Inference Button (TM)
                      • 结果
                      • 问题类型2:实验组之间的比较
                      • 例子1:药物IQ问题
                        • 实验
                          • 说明
                            • MCMC Inference Button (TM)
                              • 结果
                              • 例子2:手机消毒问题
                                • the experiment design
                                  • 数据
                                    • 说明
                                      • MCMC Inference Button (TM)
                                        • 结果
                                        领券
                                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档