最快的速度把10亿条数据导入到数据库,首先需要和面试官明确一下,10亿条数据什么形式存在哪里,每条数据多大,是否有序导入,是否不能重复,数据库是否是MySQL?
在 Arctype 社区里,我们回答了很多关于数据库性能的问题,尤其是 Postgres 和 MySQL 这两个之间的性能问题。在管理数据库中,性能是一项至关重要而又复杂的任务。它可能受到配置、硬件、或者是操作系统的影响。PostgreSQL 和 MySQL 是否具有稳定性和兼容性取决于我们的硬件基础架构。
本文介绍了MySQL 5.6中InnoDB存储引擎的压缩特性,通过对比非压缩和压缩状态下的性能表现,展示了压缩特性对数据库性能的提升。同时,文章还介绍了MySQL 5.7中InnoDB存储引擎的新特性,包括JSON支持、Full Text Search、InnoDB Cluster等,并探讨了这些新特性对MySQL 5.7性能的影响。
快手的传统离线链路和很多公司是一致的,基于 Hive做离线分层数仓的建设。在入仓环节和层与层之间是基于 Spark 或者 Hive做清洗加工和计算。这个链路有以下四个痛点:
在MySQL的世界里,InnoDB存储引擎就像心脏一样,为数据库的稳定运行提供了强大的动力。今天,我们将深入探讨InnoDB存储引擎的默认性、使用原因、运行原理、应用场景以及源码分析。如果你对数据库的内部机制感兴趣,或者正在寻找提高数据库性能的秘诀,那么这篇文章绝对不容错过!
可能谈到保持Redis与Mysql双库的数据一致性,可能很多人最先想到的方案就是读请求和写请求串行化,串到一个内存队列里去。但是这个方案有着一个致命的缺点:读请求和写请求串行化会导致系统的吞吐量大幅度降低,需要使用比正常情况下多几倍的机器去支撑线上的一个请求。Redis与Mysql双库的数据一致性问题为何会出现呢?其实我们可以考虑这么一个业务场景:我们需要更新部分数据,我们首先更新数据库数据,然后清除Redis缓存中的数据。但是数据库更新操作成功了,然而Redis清除缓存出现异常了,这样会导致出现这么一种情况:数据库中的数据已经更新为最新数据,但是Redis缓存中的数据依旧还是老数据,这时候就会出现Redis与Mysql双库的数据一致性问题。
松哥原创的 Spring Boot 视频教程已经杀青,感兴趣的小伙伴戳这里-->Spring Boot+Vue+微人事视频教程
在实际项目开发中,我们经常将Mysql作为业务数据库,ES作为查询数据库,用来实现读写分离,缓解Mysql数据库的查询压力,应对海量数据的复杂查询。
备份恢复是 DBA 必备的技能,开源数据库 MySQL 在社区中有不少常用的备份恢复方案,xtrabackup,mypump,mydumper,mysqldump,mysql enterprise backup 等等。但是这些方法多数都是从外部利用各类数据库的机制来完成备份与回复,因此多多少少会存在操作步骤多,备份恢复比较慢等问题。于是 Oracle 在 19 年 7 月下旬发布的 MySQL 的 8.0.17 版本中,加入了一个全新的功能性插件:Clone。这个插件只需要几行 client 命令就可以完成数据库的备份恢复,且花费的时间远也低于常规的备份恢复手段。
Java面试通关手册(Java学习指南,欢迎Star,会一直完善下去,欢迎建议和指导):https://github.com/Snailclimb/Java_Guide
这个系列属于个人学习网易云课堂MySQL数据库工程师微专业的相关课程过程中的笔记,本篇为其“MySQL业务优化与设计”中的MySQL数据类型相关笔记。
目前,在很多OLTP场景中,MySQL数据库都有着广泛的应用,也有很多不同的使用方式。从数据库的业务需求、架构设计、运营维护、再到扩容迁移,不同的MySQL架构有不同的特点,适应一定的业务场景,或者解决一定的业务问题。
在管理数据库时,性能是一项非常重要而又复杂的任务。它可能会受到系统的配置、硬件甚至设计的影响。有趣的是,PostgreSQL和MySQL都配置了兼容性和稳定性,这取决于我们的数据库设计的硬件基础架构。
Tapdata Cloud 是国内首家异构数据库实时同步云平台,目前支持 Oracle、MySQL、PG、SQL Server、MongoDB、ES 、达梦、Kafka之间的数据同步,即将支持 DB2、Sybase ASE、Redis、GBase、GaussDB 等,并对用户永久免费。
MySQL支持多种数据存储引擎,其中最常见的是MyISAM和InnoDB引擎。可以通过使用"show engines"命令查看MySQL支持的存储引擎。
对于Web来说,并发量和访问量增加一定程度上推动项目技术和架构的更迭和进步。可能会有以下的一些状况:
对于web来说,是用户量和访问量支持项目技术的更迭和前进。随着服务用户提升。可能会出现一下的一些状况:
Zabbix 作为一个老牌的开源监控方案,长期被用于生产实践。但是原生方案一般会采用 MySQL 作为后端存储,无法应对更大规模的监控。TiDB 兼容 MySQL 协议,可以替换 MySQL 从而增强 Zabbix 的大规模监控能力,实现新的监控方案 TiZabbix。TiZabbix 通过优化监控实施逻辑,弥补因 TiDB 和 MySQL 差异造成的诸多问题,成功完成了 10000+ 监控对象和 16T 数据存储查询的实践。
MySQL 主从集群,分散访问压力,提升整个系统的可用性,降低大访问量引发的故障率。
随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL 出现危机:
galera产品是以galera cluster方式为MySQL提高高可用集群解决方案的。galera cluster就是集成了galera插件的mysql集群。galera replication是codership提供的mysql数据同步方案,具有高可用性,方便扩展,并且可以实现多个mysql节点间的数据同步复制与读写,可保障数据库的服务高可用及数据强一致性。
摘要:本文由社区志愿者陈政羽整理,内容来源自阿里巴巴高级开发工程师徐榜江 (雪尽) 7 月 10 日在北京站 Flink Meetup 分享的《详解 Flink-CDC》。深入讲解了最新发布的 Flink CDC 2.0.0 版本带来的核心特性,包括:全量数据的并发读取、checkpoint、无锁读取等重大改进。
还记得刚上研究生的时候,导师常挂在嘴边的一句话,“科研的基础不过就是数据而已。”如今看来,无论是人文社科,还是自然科学,或许都可在一定程度上看作是数据的科学。
根据云厂商Benchmark结果,4核8G机器运行 MySQL 5.7 时,可支撑TPS 500,QPS 10000。 但随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL 出现危机:
《高性能MySQL》读书笔记(二)——MySQL存储引擎概述 (原创内容,转载请注明来源,谢谢) 一、基础信息 mysql将数据库保存在数据目录下的一个子目录,创建表时,会在此目录下,创
倘若剥开研究领域的外衣,将人的操作抽象出来,那么科研的过程大概就是根据数据流动探索其中的未知信息吧。当然科学研究的范畴涵盖甚广,也不是一两句话能够拎得清的。不过从这个角度上的阐述,也只是为了引出数据的重要性。
上篇文章写了MySQL写入压测的几种单线程的方式,本来想抛砖引玉,只是提供一些个人的经验和思路。后来有粉丝后台留言,想看看并发怎么处理,所以有了今天这篇文章。
本文的内容可能和之前的金融企业将 TiDB 应用在业务上的实践不同,下面主要介绍我们如何把 TiDB 应用在金融行业的后台运维监控上。Zabbix 作为一个老牌的开源监控方案,长期被用于生产实践。但是原生方案一般会采用 MySQL 作为后端存储,无法应对更大规模的监控。TiDB 兼容 MySQL 协议,可以替换 MySQL 从而增强 Zabbix 的大规模监控能力,实现新的监控方案 TiZabbix。TiZabbix 通过优化监控实施逻辑,弥补因 TiDB 和 MySQL 差异造成的诸多问题,成功完成了 10000+ 监控对象和 16T 数据存储查询的实践。
根据上图可以看到QPS:10.73k,实际上真实的并发大量数据到达的时候,我这里最高的QPS是将近15k.而目前单个数据库分片(实例)4CPU8G内存的配置下,最高的性能是7k的QPS。
存储引擎 Storage engine:MySQL 中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。
卡思数据是国内领先的视频全网数据开放平台,依托领先的数据挖掘与分析能力,为视频内容创作者在节目创作和用户运营方面提供数据支持,为广告主的广告投放提供数据参考和效果监测,为内容投资提供全面客观的价值评估。
这种高效的模块化体系结构为那些希望专门针对特定应用程序需求(例如数据仓库,事务处理或高可用性情况)的用户提供了巨大的好处,同时享有利用独立于任何一个的一组接口和服务的优势存储引擎。 MySQL服务器体系结构将应用程序开发者和DBA与存储级别的所有底层实现细节隔离,从而提供了一致且简单的应用程序模型和API。因此,尽管跨不同的存储引擎具有不同的功能,但应用程序不受这些差异的影响。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
所以在我们引入前从以下六个方面分别对 TiDB 进行测试验证,其中功能与架构、配置与管理、备份与恢复都是针对我们运维管理,SQL 特性、基准测试、应用场景测试则是应对业务需求和业务场景的。
DataX 是阿里云DataWorks数据集成的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS 等各种异构数据源之间高效的数据同步功能。
提示:公众号展示代码会自动折行,建议横屏阅读 一、问题描述 某业务CDB实例,每天在特地时间段内( 00:07:00 - 00:08:00左右)机器对应IO监控出现写入尖刺,且主从实例都有类似现象,从机器监控可以看到,问题确实存在。 不仅master,进行同步的slave上有相同的现象,业务方希望找到导致该IO尖刺问题稳定出现的原因。 二、问题分析 首先确定问题来源,上图所示监控为机器级别,机器IO写入负载是否来源于mysqld进程?如果来源于mysqld进程,是来自于mysqld进程的哪一部分
1.引擎的介绍 Isam 该引擎在读取数据方面速度很快,而且不占用大量的内存和存储资源;但是 Isam 不支持事务处理、不支持外键、不能够容错、也不支持索引。 该引擎在包括MySQL 5.1及其以上版本的数据库中不再支持。 Berkeley: 该存储引擎支持COMMIT和ROLLBACK等事务特性。 该引擎在包括MySQL 5.1及其以上版本的数据库中不再支持。 CSV: 使用该引擎的MySQL数据库表会在MySQL安装目录data文件夹中的和该表所在数据库名相同的目录中生成一个.CSV文件(所以,它可
Dumpling 是由 Go 语言编写的用于对数据库进行数据导出的工具。目前支持 MySQL 协议的数据库,并且针对 TiDB 的特性进行了优化。Go Dumpling! 让导出数据更稳定文章对 Dumpling 进阶使用进行了介绍。本文接下来将会介绍 Dumpling 内部表内并发的优化逻辑,从而帮助大家更深刻地理解 Dumpling 工作原理。
近年来,国产数据库技术迅速发展,得到了广泛应用和认可。中国的数据库市场由传统的外资品牌主导,逐步转向国产数据库。随着国家信息安全战略的推进,以及云计算、大数据、人工智能等新兴技术的快速发展,国产数据库在性能、可靠性、安全性等方面不断提升,逐步缩小与国际领先技术的差距。
本篇是村民新坑的开始,村民最近在看《 高性能 MySQL 》这本书,村民在看的是第三版,仅涵盖 MySQL 5.5,虽然最新的 MySQL 已经是 8.0 版本,但后者肯定是在前者的基础上,因此学习价值还是很大的。这系列村民会基本以一章节一篇的形式记录村民对书中内容的摘抄整理及笔记,没什么新意,仅仅算是一种自娱自乐的分享,对这本书感兴趣的同学当然也可以买来看看。
ACID是数据库事务正确执行的四个基本要素,包括原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)。
MySQL中DDL语句,即数据定义语言,用于创建、删除、修改、库或表结构,对数据库或表的结构操作。常见的有create,alter,drop等。这类语句通常会耗费很大代价,特别是对于大表做表结构变更。本篇文章会揭露各类DDL语句执行的详细情况。
MySQL分表分库是一种数据库架构设计的技术,在特定的场景下可以优化数据库性能和可扩展性。
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set –有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)
在这些可选项中,最常见的就是基于主从复制的方案,其次是基于Galera的方案,我们重点说说这两种方案。其余几种方案在生产上用的并不多,我们只简单说下。
项目中采用的关系型数据库是mysql,那么关系型数据库有哪些优劣势,我们可以参考下面的分析: 关系型数据库的优点: 1.基于ACID,支持事务,适合于对安全性和一致性要求高的的数据访问 2.可以进行Join等复杂查询,处理复杂业务逻辑,比如:报表 3.使用方便,通用的SQL语言使得操作关系型数据库非常方便
领取专属 10元无门槛券
手把手带您无忧上云