首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    关系型数据库的架构演变

    在系统初期,整体的并发了相对较小,因此一般都是将所有的数据信息存储在单库中进行读/写操作。但是随着用户规模不断提升,单库逐渐力不从心,TPS/QPS越来越低。因此到了这个时候,dba会将数据库设置为读写分离状态(生产环境一般会采用一主一从或者一主多从),Master负责写操作,Slave作为备库,不开放写操作,但是允许读操作,主从之间保持数据同步即可。 读写分离之后,可以大大提升单库无法支撑的负载压力 需要注意的是:如果Master存在TPS存在较高的情况,Master之前最好将同一份数据落到缓存中,以避免高并发情况下,从Slave中获取不到指定数据的情况发生 [MySQL 主从同步延迟的原因及解决办法(https://blog.csdn.net/soar_away/article/details/72615012)

    02

    一个深入浅出的 MySQL 高并发优化指南,多年MySQL实战经验分享

    这半个月,很多小伙伴留言问我618各大电商后端的技术,最多的是关于系统压力暴增情况下如何进行MySQL数据库优化的。 今天就结合我自己工作中的真实案例和大家分享一下吧。 前几年我待过一家创业公司,做的是商城业务。那两年公司业务迅速增长,用户从零积累到千万级别,每天访问量几亿次,高峰QPS高达上万次每秒。 赶上618、双十一大促期间,系统的写压力成倍增长,读业务的请求量更是在写业务的请求量的50倍。后面我们就面临了极具技术挑战性的数据库升级过程。 最初的技术选型,采用的是Java语言进行开发,数据库使用的是M

    02

    一入职就遇上Mysql亿级优化!方案改了5遍,天天被老板爆怼……

    这半个月,很多小伙伴留言问我618各大电商后端的技术,最多的是关于系统压力暴增情况下如何进行MySQL数据库优化的。 今天就结合我自己工作中的真实案例和大家分享一下吧。 前几年我待过一家创业公司,做的是商城业务。那两年公司业务迅速增长,用户从零积累到千万级别,每天访问量几亿次,高峰QPS高达上万次每秒。 赶上618、双十一大促期间,系统的写压力成倍增长,读业务的请求量更是在写业务的请求量的50倍。后面我们就面临了极具技术挑战性的数据库升级过程。 最初的技术选型,采用的是Java语言进行开发,数据库使用的是M

    02
    领券