可能谈到保持Redis与Mysql双库的数据一致性,可能很多人最先想到的方案就是读请求和写请求串行化,串到一个内存队列里去。但是这个方案有着一个致命的缺点:读请求和写请求串行化会导致系统的吞吐量大幅度降低,需要使用比正常情况下多几倍的机器去支撑线上的一个请求。Redis与Mysql双库的数据一致性问题为何会出现呢?其实我们可以考虑这么一个业务场景:我们需要更新部分数据,我们首先更新数据库数据,然后清除Redis缓存中的数据。但是数据库更新操作成功了,然而Redis清除缓存出现异常了,这样会导致出现这么一种情况:数据库中的数据已经更新为最新数据,但是Redis缓存中的数据依旧还是老数据,这时候就会出现Redis与Mysql双库的数据一致性问题。
最近业务试水电商,接了一个秒杀的活。之前经常看到淘宝的同行们讨论秒杀,讨论电商,这次终于轮到我们自己理论结合实际一次了。
来源:https://www.tuicool.com/articles/JzQvUb 秒杀系统涉及到的知识点 高并发,cache,锁机制 基于缓存架构redis,Memcached的先进先出队列。 稍
在 MySQL架构(二)SQL 更新语句是如何执行的?中,小鱼介绍了SQL 更新语句的执行流程,文章中考虑初次介绍MySQL 架构,涉及到服务层的流程并没有展开介绍。
比如有10件商品要秒杀,可以放到缓存中,读写时不要加锁。 当并发量大的时候,可能有25个人秒杀成功,这样后面的就可以直接抛秒杀结束的静态页面。进去的25个人中有15个人是不可能获得商品的。所以可以根据进入的先后顺序只能前10个人购买成功。后面15个人就抛商品已秒杀完。
对于Web来说,并发量和访问量增加一定程度上推动项目技术和架构的更迭和进步。可能会有以下的一些状况:
某共享汽车出行平台从随着业务的发展,可能大家听到出行以为是滴滴,然而不是,不过今年美团等巨头也入场共享汽车行业,表明公司业务至少是不错的,城市也在不断扩张。
在高并发的场景下,大量的请求直接访问MySQL很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,MySQL和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。
对于web来说,是用户量和访问量支持项目技术的更迭和前进。随着服务用户提升。可能会出现一下的一些状况:
—1— 前言 在高并发的场景下,大量的请求直接访问Mysql很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,Mysql和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。 —2— 数据不一致的原因 1.导致数据不一致的原因 在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。 所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。 读取缓存步骤一般没有什么问题,但是一旦涉及到数
数据首先都写到数据库,之后更新redis(先写redis再写mysql,如果写入失败事务回滚会造成redis中存在脏数据)
本栏目Java开发岗高频面试题主要出自以下各技术栈:Java基础知识、集合容器、并发编程、JVM、Spring全家桶、MyBatis等ORMapping框架、MySQL数据库、Redis缓存、RabbitMQ消息队列、Linux操作技巧等。
在高并发的场景下,大量的请求直接访问Mysql很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,Mysql和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。
2、所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。
针对现状,写一个主库,挂着多个从库,然后从多个从库来读,那不就可以支撑更高的读并发压力了吗?
MySQL 主从集群,分散访问压力,提升整个系统的可用性,降低大访问量引发的故障率。
你们有没有做 MySQL 读写分离?如何实现 MySQL 的读写分离?MySQL 主从复制原理的是啥?如何解决 MySQL 主从同步的延时问题?
在MySQL的世界里,InnoDB存储引擎就像心脏一样,为数据库的稳定运行提供了强大的动力。今天,我们将深入探讨InnoDB存储引擎的默认性、使用原因、运行原理、应用场景以及源码分析。如果你对数据库的内部机制感兴趣,或者正在寻找提高数据库性能的秘诀,那么这篇文章绝对不容错过!
其实所谓的高并发,如果你要理解这个问题呢,其实就得从高并发的根源出发,为啥会有高并发?为啥高并发就很牛逼?
有个水友提问: 沈老师,我们有一次MySQL崩溃,重启后发现有些已经提交的事务对数据的修改丢失了,不是说事务能保证ACID特性么,想问下什么情况下可能导致“事务已经提交,数据却丢失”呢? 这个问题有点复杂,得先从redo log说起。 为什么要有redo log? 事务提交后,必须将事务对数据页的修改刷(fsync)到磁盘上,才能保证事务的ACID特性。 这个刷盘,是一个随机写,随机写性能较低,如果每次事务提交都刷盘,会极大影响数据库的性能。 随机写性能差,有什么优化方法呢? 架构设计中有两个常见的优化方法
所以如果你确实有真才实学,在互联网公司里干过高并发系统,那你确实拿offer基本如探囊取物,没啥问题。
大家好,我是Coder哥,我们继续来聊分布式思想,今天我们来聊一下分布式缓存一致性的问题。这篇比较全面,记得收藏哟!!!如果觉得有帮助点个赞也不是不可以的,^_^
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
在关系型数据库中,锁和多版本并发控制(MVCC)是两个关键的机制,用于管理并发访问数据的方式。MySQL是一个流行的关系型数据库管理系统,它使用锁和MVCC来保证数据的一致性、隔离性和并发性。在本文中,我们将深入探讨MySQL中的锁和MVCC机制,了解它们的工作原理,并学习如何使用它们来确保数据的安全和可靠性。
说实话,如果面试官问你这个题目,那么你必须要使出全身吃奶劲了。为啥?因为你没看到现在很多公司招聘的 JD 里都是说啥,有高并发就经验者优先。
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷。
Hadoop 是目前大数据领域最主流的一套技术体系,包含了多种技术,例如 HDFS(分布式文件系统),YARN(分布式资源调度系统),MapReduce(分布式计算系统)等等。
本文介绍了MySQL 5.6中InnoDB存储引擎的压缩特性,通过对比非压缩和压缩状态下的性能表现,展示了压缩特性对数据库性能的提升。同时,文章还介绍了MySQL 5.7中InnoDB存储引擎的新特性,包括JSON支持、Full Text Search、InnoDB Cluster等,并探讨了这些新特性对MySQL 5.7性能的影响。
在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。
秒杀大家都不陌生。自2011年首次出现以来,无论是双十一购物还是 12306 抢票,秒杀场景已随处可见。简单来说,秒杀就是在同一时刻大量请求争抢购买同一商品并完成交易的过程。
MySQL性能压测或者基准测试看起来很简单,使用sysbench,tpcc工具跑跑拿到数据就好,其实压测是一个技术活儿,尤其是涉及到性能对比的测试,因为不同场景/不同厂商的产品的参数设置不同,测试的结果也不一样。如果不阐明具体的参数配置差异,直接给出压测结果可能给其他人带来误导。
只要问到缓存,上来第一个问题,肯定能是先问问你项目哪里用了缓存?为啥要用?不用行不行?如果用了以后可能会有什么不良的后果?
Java的并发包提供了三个常用的并发队列实现,分别是:ArrayBlockingQueue、ConcurrentLinkedQueue 和 LinkedBlockingQueue。
MySQL分表分库是一种数据库架构设计的技术,在特定的场景下可以优化数据库性能和可扩展性。
为了更方便的进行数据读写,消息在磁盘底层的文件目录设计,都需要关注和解决什么问题呢:
Java的并发包提供了三个常用的并发队列实现,分别是:ArrayBlockingQueue、ConcurrentLinkedQueue 和 LinkedBlockingQueue 。
MySQL 是一种流行的开源关系数据库管理系统(RDBMS),其性能和可靠性在各种规模的应用中得到了广泛的验证。尽管 MySQL 本身已经非常高效,但在一些高并发、大数据量的场景下,对其内核进行深度优化是提升性能的关键。本文将详细探讨 MySQL 内核深度优化的若干方面,包括存储引擎优化、查询优化、内存管理优化、并发控制优化以及索引优化等。
项目中采用的关系型数据库是mysql,那么关系型数据库有哪些优劣势,我们可以参考下面的分析: 关系型数据库的优点: 1.基于ACID,支持事务,适合于对安全性和一致性要求高的的数据访问 2.可以进行Join等复杂查询,处理复杂业务逻辑,比如:报表 3.使用方便,通用的SQL语言使得操作关系型数据库非常方便
MySQL 基础 几个常考的知识点 什么是事务? 事务是数据库并发控制的基本单位 事务可以看作是一系列 SQL 语句的集合 事务必须要么全部执行成功,要么全部执行失败(回滚) 举个例子 转账操作是事务使用的一个常见场景。 Transaction 示例 session.begin() try: item1 = session.query(Item).get(1) item2 = session.query(Item).get(2) item1.foo = 'bar' item
当我们面临高并发的查询数据请求时,可以使用主从读写分离的方式,部署多个从库分摊读压力。 大部分互联网业务都是读多写少,因此优先考虑DB如何支撑更高并发查询,首先就需要区分读、写流量,这才方便针对读流量单独扩展,即主从读写分离。
实际上MYSQL 5.x的日志系统存在两个问题,导致一些性能问题,尤其在高并发写入和对数据修改的情况下,其中的瓶颈的问题在于两个瓶颈, 当多线程访问数据在落入到 log_buffer 的情况下,还是需要获取锁让写入有顺序性, 同时在获取redo已经将数据页面写入后,也会在log_buffer中将写入到日志中的顺序进行一个重排,这也是需要有顺序性.
笔者将优化分为了两大类:软优化和硬优化。软优化一般是操作数据库即可;而硬优化则是操作服务器硬件及参数设置。
随着分布式事务的出现,传统的单机事务模型(ACID)已经无法胜任,尤其是对于一个高访问量、高并发的互联网分布式系统来说。
高并发下争夺共享资源,比如秒杀对于库存这种共享资源需要用到分布式锁,如果不用分布式锁很可能造成超卖。
在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程中,整个Web系统遇到了很多的问题和挑战。如果Web系统不做针对性的优化,会轻而易举地陷入到异常状态。我们现在一起来讨论下,优化的思路和方法哈。
电商的秒杀和抢购,对我们来说,都不是一个陌生的东西。然而,从技术的角度来说,这对于Web系统是一个巨大的考验。当一个Web系统,在一秒钟内收到数以万计甚至更多请求时,系统的优化和稳定至关重要。这次我们会关注秒杀和抢购的技术实现和优化,同时,从技术层面揭开,为什么我们总是不容易抢到火车票的原因?
领取专属 10元无门槛券
手把手带您无忧上云