计算3D中两条线(线段)之间的最短距离可以使用以下公式:
d = |(p2 - p1) x (p3 - p1)| / |p3 - p1|
其中,p1、p2和p3分别表示两条线段的起点、终点和中点,x表示向量叉积。
在实际应用中,可以使用以下步骤计算最短距离:
需要注意的是,如果两条线段相交,则最短距离为0。如果两条线段平行,则最短距离为两条线段之间的距离。
今天来实现计算两条线段的交点的解析几何算法。 我们要实现 getLineSegIntersection 方法:提供两条线段,计算它们的交点。 每条线段会用两个点坐标表示。...变体1:两线段是否有交点。 返回值换成布尔值即可。 判断两线段是否有交点,我之前还写了另一种解法,感兴趣可以看看: 《几何算法:判断两条线段是否相交》 变体2:计算两直线的交点。...但有一个特殊的情况:重叠只有一个点(比如线段 a 的末点刚好是线段 b 的起点)。如果你的场景下判断比较严格,你可以选择返回这个点。要实现这部分也是有点点复杂的。 2、误差处理。...线段的两个端点的距离非常小,计算出的结果也会非常小,可能会进入了 0 的绝对误差范围了,考虑改成相对误差。 3、溢出风险。数值很大时有溢出风险,可以考虑计算一个缩放值,缩小后计算,计算完再放大回去。...结尾 总结一下,求两线段的交点,本质就是解方程,需要用到克莱姆法则,计算出来的交点是直线交点,不一定是线段交点,需要再判断点是否在线段范围内。 不复杂,就是有一点点小细节。
问题 已知地球上的经纬度点A, B, C,求A点与弦BC的最短距离。...分析 先求出弦BC,AB,AC的长度,将BC,AB,AC看做平面的三角形的三条边,这是问题就变成求三角形AEF的点A到边EF的垂线的长度。...g= \frac {\sqrt {(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}{2a} 情况二 :∠ACB 大于等于90度,g = c 情况三:∠ABC 大于等于90度,g = b 计算步骤...计算 cosα = \frac {a^2 + b^2 - c^2}{2ab} cosβ = \frac {a^2 + c^2 - b^2}{2ac} 如果,cosα <= 0 , g = b 否则如果
计算Python Numpy向量之间的欧氏距离,已知vec1和vec2是两个Numpy向量,欧氏距离计算如下: import numpy dist = numpy.sqrt(numpy.sum(numpy.square...(vec1 – vec2))) 或者直接: dist = numpy.linalg.norm(vec1 – vec2) 补充知识:Python中计算两个数据点之间的欧式距离,一个点到数据集中其他点的距离之和...如下所示: 计算数两个数据点之间的欧式距离 import numpy as np def ed(m, n): return np.sqrt(np.sum((m - n) ** 2)) i = np.array...计算一个点到数据集中其他点的距离之和 from scipy import * import pylab as pl all_points = rand(500, 2) pl.plot(all_points...0.5) 以上这篇计算Python Numpy向量之间的欧氏距离实例就是小编分享给大家的全部内容了,希望能给大家一个参考。
本文实例为大家分享了php计算两坐标点之间距离的实现代码,供大家参考,具体内容如下 地球上两个点之间,可近可远。 当比较近的时候,可以忽略球面因素,当做是一个平面,这样就有了两种计算方法。...//两点间距离比较近 function getDistance($lat1, $lng1, $lat2, $lng2) { $earthRadius = 6367000; //地球半径m $lat1...$theta)); if ($dist < 0 ) { $dist += M_PI; } return $dist = $dist * $radius; } 小编再为大家分享一段php坐标之间距离的求解代码...php define('EARTH_RADIUS', 6378.137);//地球半径 define('PI', 3.1415926); /** * 计算两组经纬度坐标 之间的距离.../米 以上就是本文的全部内容,希望对大家的学习有所帮助。
1、计算距离的公式比较长(网上查找),建一个mysql函数: delimiter $$ CREATE FUNCTION FUN_JW_DIST(lng1 double(15,9), lat1 double...delimiter ; 测试: 例如: 第一点(116.359751000, 39.936868000) 第二点(117.291179000, 35.657141000) 在数据库中执行
大家好,又见面了,我是你们的朋友全栈君 用php计算两个指定的经纬度地点之间的距离,代码: /** *求两个已知经纬度之间的距离,单位为米 *@param lng1,lng2 经度 *@param lat1...,lat2 纬度 *@return float 距离,单位米 *@edit www.jbxue.com **/ function getdistance(lng1,lat1,lng2,lat2){ /...> 举例,“上海市延安西路2055弄”到“上海市静安寺”的距离: 上海市延安西路2055弄 经纬度:31.2014966,121.40233369999998 上海市静安寺 经纬度:31.22323799999999,121.44552099999998...几乎接近真实的距离了,看来用php计算两个经纬度地点之间的距离,还是靠谱的,呵呵。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
128维特征向量,从而通过计算特征向量之间的欧氏距离来得到人脸相似程度。...而这篇文章中他们提出了一个方法系统叫作FaceNet,它直接学习图像到欧式空间上点的映射,其中呢,两张图像所对应的特征的欧式空间上的点的距离直接对应着两个图像是否相似。...人脸之间距离 如上图所示,直接得出不同人脸图片之间的距离,通过距离就可以判断是否是同一个人,阈值大概在1.1左右。...而现在我要做的,就是用训练好的模型文件,实现任意两张人脸图片,计算其FaceNet距离。然后就可以将这个距离用来做其他的事情了。...:%f "%dist) 代码的逻辑就是 先导入模型参数 然后导入两张图片,分别获取其经过模型后得到的128维特征向量 最后计算两个向量的欧氏距离 代码中有几个参数: image_size:图片长宽尺寸,
1.思路 原先图片匹配一般都是缺口匹配全图 优化点: 1.缺口图片匹配缺口所在图片那一行图片可以提高他识别率 2.移动后再进行2次匹配计算距离 2.代码 #.缺口图片匹配缺口所在图片那一行图片可以提高他识别率...blockBox * 1.0).astype(np.float32) backgroundROI = (backgroundROI * 1.0).astype(np.float32) ##使用cv的...cv.minMaxLoc(res) print("loc==", loc[3][0]) locs = (loc[3][0]) return locs #移动前获取滑块那部分页面上的图片用...selenium截图的形式 driver.find_elements_by_xpath('//*[@class="yidun_bg-img"]')[1].screenshot('0.png') bg_act...x1 = int(x1*scale) print("x1x2=", x1, x2) #部分代码 ActionChains(滑块元素).move_by_offset(xoffset= 移动上面生成的距离
缘起 《你被追尾了续》中我们学习了 GJK 碰撞检测算法. 但其实 GJK 算法发明出来的初衷是计算凸多边形之间的距离的. 所以我们来学习一下这种算法....所以我们自然要解决的问题是,怎么快速能知道答案是坐标原点到 (-4,1) 到 (1, 3) 的线段的距离呢?...如果 shape1 或者 shape2 中有一个是曲边的,则最后 dc 和 da 之间的距离差可能就不是 0 了....一般情况下,我们都会先做碰撞检测,然后再求他们之间的距离 还有一个有趣的问题是,我们已经能求出两个凸多边形的距离了,那么你能更进一步求出产生这个距离的那对点吗?...而求两根线段之间的最短距离的实现点对就很简单了. 以下面一道经典的题目来证明上面的算法正确.
功能:根据指定点和角度创建一条直线 CogCreateSegmentAvgSegsTool 功能:创建两条线段的平均线 CogCreateSegmentTool 功能:创建线段 6、 Geometry...功能:两圆的最短距离 CogDistanceLineCircleTool 功能:线到圆的最短距离 CogDistanceLineEllipseTool 功能:线到椭圆的最短距离 CogDistancePointCircleTool...功能:点到点的最短距离 CogDistancePointSegmentTool 功能:点到线段的最短距离 CogDistanceSegmentCircleTool ....功能:线段到圆的最短距离 CogDistanceSegmentEllipseTool 功能:线段到椭圆的最短距离 CogDistanceSegmentLineTool 功能:线段到线的最短距离...CogDistanceSegmentSegmentTool 功能:线段到线段的最短距离 9、 Geometry - Measurement ?
已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...我们首先获取(排序后的)最小旋转边界框坐标,并分别计算四个顶点之间的中点(第10-15行)。 然后计算中点之间的欧氏距离,给出我们的“像素/尺寸”比例,来确定一英寸为多少像素宽度。...然后,第12行计算参考位置和对象位置之间的欧式距离,然后除以“像素/度量”,得到两个对象之间的实际距离(以英寸为单位)。然后在图像上标识出计算的距离(第13-15行)。...注意图像中的两个0.25美分完全平行,这意味着所有五个顶点之间的距离均为6.1英寸。
实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。...那么,如何java如何计算两个经纬度之间的距离呢?有两种方法,误差都在接受范围之内。 1、基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。...s = s * EARTH_RADIUS; s = Math.round(s * 10000) / 10000; return s; } 2、计算中心经纬度与目标经纬度的距离...(米) /** * 计算中心经纬度与目标经纬度的距离(米) * * @param centerLon * 中心精度 * @param...两点相距:" + dist2 + " 米"); } 其中:1.两点相距:14.0 米 2.两点相距:15.924338550347233 米 由此可见,这两种方法误差都不算大,如此java就能计算出两个经纬度直接的距离
实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。...那么,如何java如何计算两个经纬度之间的距离呢?有两种方法,误差都在接受范围之内。 1、基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。...s = s * EARTH_RADIUS; s = Math.round(s * 10000) / 10000; return s; } 2、计算中心经纬度与目标经纬度的距离...(米) /** * 计算中心经纬度与目标经纬度的距离(米) * * @param centerLon * 中心精度 * @...两点相距:" + dist2 + " 米"); } 其中:1.两点相距:14.0 米 2.两点相距:15.924338550347233 米 由此可见,这两种方法误差都不算大,如此java就能计算出两个经纬度直接的距离
Go语言计算两个经度和纬度之间的距离 package main import ( "fmt" "math" ) func main() { lat1 := 29.490295
如何计算数组a = np.array([1,2,3,2,3,4,3,4,5,6])和数组b = np.array([7,2,10,2,7,4,9,4,9,8])之间的欧式距离?
参考链接: Python中的复数1(简介) 在二维平面会涉及到两个变量x, y,并且有的时候需要计算两个二维坐标之间的距离,这个时候将二维坐标转化为复数的话那么就可以使用python中的abs绝对值函数对复数取绝对值来计算两个点之间的距离或者是计算复数的模...,当我们将两个复数对应的坐标相减然后对其使用abs绝对值函数那么得到的就是两点之间的距离,对一个复数取绝对值得到的就是复数的模长 if __name__ == '__main__': points...= [[1, 0], [0, 1], [2, 1], [1, 2]] for i in points: print(i) # 使用python中的解包将每个点转换为复数表现形式... points = [complex(*z) for z in points] for i in range(len(points)): # 计算每个复数的模长 ...points[i] = abs(points[i]) print(points) # 比如计算(0, 1) (1, 2)两点之间的距离 point1 = complex(0, 1
/** * 求两个已知经纬度之间的距离,单位为米 * * @param lng1 $ ,lng2 经度 * @param lat1 $ ,lat2 纬度 * @return float 距离
round(6378.138*2*asin(sqrt(pow(sin( (lat1*pi()/180-lat2*pi()/180)/2),2)+cos(lat1...
领取专属 10元无门槛券
手把手带您无忧上云