首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

计算多组坐标之间的距离

是一个常见的问题,可以通过计算欧氏距离或曼哈顿距离来解决。

  1. 欧氏距离(Euclidean Distance):欧氏距离是最常见的距离度量方法,它基于两点之间的直线距离。对于二维平面上的两个点 (x1, y1) 和 (x2, y2),欧氏距离可以通过以下公式计算:
  2. 欧氏距离的优势在于能够准确地衡量两点之间的直线距离,适用于需要考虑空间位置关系的场景。在实际应用中,可以使用腾讯云的地理位置服务(https://cloud.tencent.com/product/tianditu)来获取坐标信息,并使用数学库或编程语言中的函数来计算欧氏距离。
  3. 曼哈顿距离(Manhattan Distance):曼哈顿距离是另一种常见的距离度量方法,它基于两点之间的城市街区距离(沿着网格线移动)。对于二维平面上的两个点 (x1, y1) 和 (x2, y2),曼哈顿距离可以通过以下公式计算:
  4. 曼哈顿距离的优势在于它能够忽略斜线距离,只考虑水平和垂直方向上的距离,适用于需要考虑路径规划或网格布局的场景。在实际应用中,可以使用腾讯云的地理位置服务(https://cloud.tencent.com/product/tianditu)来获取坐标信息,并使用数学库或编程语言中的函数来计算曼哈顿距离。

总结起来,计算多组坐标之间的距离可以使用欧氏距离或曼哈顿距离来解决。具体选择哪种距离度量方法取决于应用场景和需求。腾讯云提供了地理位置服务来获取坐标信息,并且可以使用各类编程语言和数学库来计算距离。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

2021华为杯E题思路+demo代码

2021 年中国研究生数学建模竞赛 E 题参考思路 交流群:912166339,非伸手党群 信号干扰下的超宽带(UWB)精确定位问题 一、背景 UWB(Ultra-Wideband)技术也被称之为“超宽带”,又称之为脉冲无线电技术。这是一 种无需任何载波,通过发送纳秒级脉冲而完成数据传输的短距离范围内无线通信技术,并且信 号传输过程中的功耗仅仅有几十µW。UWB 因其独有的特点,使其在军事、物联网等各个领域 都有着广阔的应用。其中,基于 UWB 的定位技术具备实时的室内外精确跟踪能力,定位精度 高,可达到厘米级甚至毫米级定位。UWB 在室内精确的定位将会对卫星导航起到一个极好的 补充作用,可在军事及民用领域有广泛应用,比如:电力、医疗、化工行业、隧道施工、危险 区域管控等。UWB 更多应用场景请参见[4—6]。 UWB 的定位技术有多种方法,本文仅考虑基于飞行时间(Time of Flight, TOF)的测距原 理,它是 UWB 定位法中最常见的定位方法之一。TOF 测距技术属于双向测距技术,其通过计 算信号在两个模块的飞行时间,再乘以光速求出两个模块之间的距离,这个距离肯定有不同程 度的误差,但其精度已经比较高。 在室内定位的应用中,UWB技术可以实现厘米级的定位精度(一般指2维平面定位),并 具有良好的抗多径干扰和衰弱的性能以及具有较强的穿透能力。但由于室内环境复杂多变 UWB 通信信号极易受到遮挡,虽然UWB技术具有穿透能力,但仍然会产生误差,在较强干 扰时,数据会发生异常波动(通常是时间延时),基本无法完成室内定位,甚至会造成严重事 故。因此,信号干扰下的超宽带(UWB)精确定位问题成为亟待解决的问题。 二、问题描述 为解决信号干扰下的超宽带(UWB)精确定位问题,我们通过实际场景实测,采集到一 定数量的数据,即利用 UWB 的定位技术(TOF),采集到锚点( anchor)与靶点(Tag)之间 的距离,希望通过数学建模(或算法)方法 ,无论信号是否干扰,都可以给出目标物(靶点) 的精确定位( 3 维坐标)。 三、实验场景和数据采集 如图所示,在 5000mm5000mm3000mm 的测试环境中,分别在 4 个角落 A0,A1,A2, A3 放置 UWB 锚点( anchor),锚点向所有方向发送信号。Tag 是 UWB 标签(靶点),即需 要定位的目标(只在测试环境范围内)。Tag 接收到 4 个 UWB 锚点( anchor)的信号(无论 信号是否干扰,Tag 一般都可以接收到信号),利用 TOF 技术,分别解算出对应的 4 个距离数 据。 实验在实验场景 1 中采集了 Tag 在 324 个不同位置,在信号无干扰和信号干扰下的 UWB 数据,即每个位置各测试(采集)2 次,一次信号无干扰,另一次信号有干扰(锚点与靶点间 有遮挡),注意:每次采集数据时,由于 Tag 在同一位置会停留一会儿时间,而锚点与 Tag 之 间每 0.2—0.3 秒之间就会发送、接收信号一次,所以在同一位置点,UWB 会采集到多组数据 (多组数据都代表同一位置的信息),组数的多少视 Tag 在同一位置的时间而定,停留的时间 越长,组数就越多。数据见文件夹“附件 1:UWB 数据集”。 图 1 实测环境示意图 实验场景 1: 靶点(Tag)范围:5000mm5000mm3000mm 锚点( anchor)位置(单位:mm): A0( 0,0,1300)、 A1( 5000,0,1700)、 A2( 0,5000,1700)、A3( 5000,5000,1300) 四、数据文件说明 ( 1)UWB 数据集 “附件 1:UWB 数据集”有 2 个文件夹和 1 个文件,1 个文件(Tag 坐标信息.txt)存放 324 个不同位置的编号及 3 维坐标信息,2 个文件夹中 1 个存放信号无干扰下(正常)采集的 数据(各文件名为 x.正常.txt,x 表示对应的位置编号),另 1 个存放信号有干扰下(异常)采 集的数据(各文件名为 x.异常.txt,x 表示对应的位置编号)。 ( 2)数据文件 Tag 在每个位置都采集了 2 个数据文件(1 个正常,另 1 个异常),共有 648 个数据文件, 无论正常、异常数据,数据格式都一样,每个数据文件开头第 1 行为采集开始行,无实际意义, 接下来,每 4 行为一组,表示 UWB 采集的一组完整数据(一组数据表示一个样品),如: T:144235622:RR:0:0:950:950:118:1910 T:144235622:RR:0:1:2630:2630:118:1910 T:144235622:RR:0:2:5120:5120:118:1910 T:144235

03
  • 室内定位中非视距的识别和抑制算法研究综述(部分)

    针对存在非视距(non-line-of-sight, NLOS)的室内定位算法进行研究. 首先描述室内定位中的常用技术和算法(航迹推算、指纹识别定位、邻近探测、极点定位、三角定位、多边定位、质心定位), 概括其原理、优缺点和适用场景; 其次, 通过仿真测试说明研究NLOS识别和抑制的必要性; 再次, 分别介绍NLOS识别和NLOS抑制的几类算法, NLOS识别算法包括统计学方法、几何关系法、机器学习法、信道特征提取法和虚点密度识别法, NLOS抑制算法包括模糊理论法、引入平衡参数法、几何关系法、小波去噪法、机器学习类算法、凸优化类算法、残差类算法、最小二乘类算法和多维缩放类算法; 最后, 对全文进行总结并指出NLOS室内定位亟待解决的问题.

    02

    R语言实现PCOA分析

    大家对主成分分析(principal components analysis, PCA) 都很熟悉,但是今天我们来介绍下主坐标分析(principal coordinate analysis, PCoA)。那么这两个差了个o字母具体有什么区别?首先PCA是常用的降维算法;利用线性变换,将数据变换到一个新的坐标系统中;然后再利用降维的思想,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上。这种降维的思想首先减少数据集的维数,同时还保持数据集的对方差贡献最大的特征,最终使数据直观呈现在二维坐标系。PCoA主要是探索数据相似度或者相异度可视化方法。可呈现研究数据相似性或差异性的可视化坐标,是一种非约束性的数据降维分析方法,可用来研究样本群落组成的相似性或相异性。其实通俗的讲,PCA主要是基于原始数据矩阵的降维;PCoA主要是基于样本的原始数据计算出来的距离矩阵的降维。如果样本数目比较多,而物种数目比较少,那肯定首选PCA;如果样本数目比较少,而物种数目比较多,那肯定首选PCoA。

    03

    HDOJ(HDU) 1785 You Are All Excellent(角度运算)

    Problem Description 本次集训队共有30多人参加,毫无疑问,你们都是很优秀的,但是由于参赛名额有限,只能选拔部分队员参加省赛。从学校的角度,总是希望选拔出最优秀的18人组成6支队伍来代表学校。但是,大家也知道,要想做到完全客观,是一件很难的事情。因为选拔的标准本身就很难统一。 为了解决这个难题,我现在把问题作了简化,现在假设每个队员都是二维平面中的一个点,用(xi,yi)坐标来表示,一个队员的能力可以用他到原点的欧几里德距离来表示。由于这种排名标准太~客观了,新队员很难有出头的机会,很多人很是郁闷。特别是一个废话不是很多、不是特别暴躁、号称盖帽高手的伪**就很有意见,他现在要求改革排名规则,并且自己提出了一套号称绝对公正的方案: 现在不是用一个点来表示一个队员了,而是用原点到该队员所在的点所构成的向量来表示一个队员。如果该向量和X正轴夹角比较小的话,就说他的能力比较高,排名就应该靠前。 这就是著名的“伪氏规则”(说实话,这规则我有点怀疑其客观性,因为我知道他的坐标是(3.1,0.1)…)

    01

    Kmeans小实践

    我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

    00
    领券