
随着全球气候变化的加剧,获取准确、实时的气候数据对于科学研究、政策制定和灾害预警变得愈发重要。卫星遥感技术提供了海量的多源数据,但传统的数据处理方法面临着数据异构性、时空复杂度和信息提取困难等挑战。近年来,大型语言模型(LLM)在多模态数据处理领域展现出巨大潜力,为气候数据的智能解读开辟了新的可能性。
本研究聚焦于LLM在卫星气候数据多模态融合中的应用,探讨如何通过自然语言处理、计算机视觉和时间序列分析的深度整合,实现对复杂气候现象的智能理解和预测。我们提出了一种创新的多模态融合架构,能够同时处理卫星图像、时序数据和文本描述,并通过统一的语义空间实现跨模态信息的有效关联。
本文的主要贡献包括:
本研究不仅为环境科学领域提供了新的数据分析工具,也为人工智能技术在地球科学中的应用探索了新的路径。通过将先进的AI技术与气候科学相结合,我们有望提升对气候变化的理解和应对能力。
卫星遥感技术已成为获取全球气候数据的主要手段,不同类型的卫星传感器提供了多样化的数据产品:
卫星数据类型 | 传感器示例 | 数据特点 | 应用场景 |
|---|---|---|---|
光学图像 | MODIS, Landsat | 高空间分辨率,可见/红外波段 | 地表覆盖变化,植被监测 |
红外辐射 | AIRS, IASI | 热辐射信息,大气温度剖面 | 大气热力学状态分析 |
微波辐射 | AMSR2, GMI | 全天时全天候,穿透云层 | 降水,土壤湿度监测 |
雷达数据 | Sentinel-1, ALOS | 穿透云雾,提供高度信息 | 地形测量,冰川监测 |
重力场数据 | GRACE-FO | 地球重力场变化 | 冰盖质量变化,地下水储量 |
大气成分 | OCO-2, TROPOMI | 气体浓度分布 | CO₂监测,空气质量评估 |
卫星气候数据处理面临的主要挑战包括:
大型语言模型在处理复杂多模态数据方面具有独特优势:
构建LLM驱动的卫星数据多模态融合系统需要遵循以下设计原则:
高效的数据预处理是多模态融合的基础,我们设计了一套完整的预处理流程:
class SatelliteDataProcessor:
def __init__(self, config=None):
self.config = config or {
"image_resolution": 256,
"time_window": 7, # 天
"normalization_method": "z_score",
"cloud_threshold": 0.8,
"interpolation_method": "linear"
}
self.data_cache = {}
print("卫星数据处理器初始化完成")
def load_satellite_image(self, image_path, band_selection=None):
"""加载卫星图像并选择特定波段"""
try:
import rasterio
import numpy as np
with rasterio.open(image_path) as src:
# 如果指定了波段选择
if band_selection:
bands = src.read(band_selection)
else:
bands = src.read()
# 获取元数据
meta = src.meta
transform = src.transform
crs = src.crs
# 转换数据格式
# 将(bands, height, width)转换为(height, width, bands)
if len(bands.shape) == 3:
bands = np.transpose(bands, (1, 2, 0))
return {
"data": bands,
"meta": meta,
"transform": transform,
"crs": crs
}
except Exception as e:
print(f"加载卫星图像错误: {e}")
return None
def normalize_image(self, image_data):
"""图像数据标准化"""
import numpy as np
data = image_data["data"].copy()
if self.config["normalization_method"] == "z_score":
# 计算每个波段的均值和标准差
for b in range(data.shape[2]):
band_data = data[:,:,b]
mean_val = np.nanmean(band_data)
std_val = np.nanstd(band_data)
if std_val > 0:
data[:,:,b] = (band_data - mean_val) / std_val
elif self.config["normalization_method"] == "minmax":
# 最小-最大标准化
for b in range(data.shape[2]):
band_data = data[:,:,b]
min_val = np.nanmin(band_data)
max_val = np.nanmax(band_data)
if max_val > min_val:
data[:,:,b] = (band_data - min_val) / (max_val - min_val)
result = image_data.copy()
result["data"] = data
return result
def cloud_masking(self, image_data, cloud_prob=None):
"""云掩膜处理"""
import numpy as np
if cloud_prob is None:
# 如果没有提供云概率数据,使用默认阈值
# 这里仅作为示例,实际应用需要更复杂的云检测算法
return image_data
data = image_data["data"].copy()
# 应用云掩膜
mask = cloud_prob < self.config["cloud_threshold"]
for b in range(data.shape[2]):
data[:,:,b] = np.where(mask, data[:,:,b], np.nan)
result = image_data.copy()
result["data"] = data
result["cloud_mask"] = mask
return result
def resample_image(self, image_data, target_resolution):
"""重采样图像到目标分辨率"""
try:
from rasterio.enums import Resampling
import rasterio.transform
import numpy as np
data = image_data["data"]
transform = image_data["transform"]
# 计算缩放因子
src_height, src_width = data.shape[:2]
scale_x = target_resolution / transform.a
scale_y = -target_resolution / transform.e # 负号因为y方向通常向下
# 计算新的尺寸
new_height = int(src_height * scale_y)
new_width = int(src_width * scale_x)
# 创建新的变换
new_transform = rasterio.transform.from_bounds(
transform.xoff,
transform.yoff + src_height * transform.e,
transform.xoff + src_width * transform.a,
transform.yoff,
new_width,
new_height
)
# 重采样每个波段
resampled_data = np.zeros((new_height, new_width, data.shape[2]), dtype=np.float32)
for b in range(data.shape[2]):
from scipy.ndimage import zoom
resampled_band = zoom(data[:,:,b], (scale_y, scale_x),
order=1, mode='constant', cval=np.nan)
resampled_data[:,:,b] = resampled_band
result = image_data.copy()
result["data"] = resampled_data
result["transform"] = new_transform
result["meta"]["height"] = new_height
result["meta"]["width"] = new_width
result["meta"]["transform"] = new_transform
return result
except Exception as e:
print(f"图像重采样错误: {e}")
return image_data
def extract_time_series(self, point_coords, data_cube, time_dimension):
"""从数据立方体中提取时间序列数据"""
import numpy as np
from rasterio.transform import rowcol
try:
# 转换地理坐标到图像坐标
row, col = rowcol(data_cube["transform"], point_coords[0], point_coords[1])
# 检查坐标是否在图像范围内
if (0 <= row < data_cube["data"].shape[1] and
0 <= col < data_cube["data"].shape[2]):
# 提取时间序列
time_series = data_cube["data"][:, row, col].copy()
return {
"coordinates": point_coords,
"time_series": time_series,
"time_dimension": time_dimension
}
else:
print(f"坐标({point_coords})超出图像范围")
return None
except Exception as e:
print(f"提取时间序列错误: {e}")
return None
def preprocess_for_llm(self, image_data, time_series_data=None, metadata=None):
"""为LLM准备多模态输入数据"""
processed_data = {
"image_features": None,
"time_series_features": None,
"metadata_text": None
}
# 处理图像数据
if image_data is not None:
# 归一化
normalized = self.normalize_image(image_data)
# 调整分辨率
resampled = self.resample_image(normalized, self.config["image_resolution"])
# 提取图像特征(简化版,实际应用中可能使用CNN等提取特征)
processed_data["image_features"] = {
"data": resampled["data"].flatten()[:10000], # 简化示例
"shape": resampled["data"].shape,
"transform": resampled["transform"].to_gdal()
}
# 处理时间序列数据
if time_series_data is not None:
import numpy as np
ts_data = time_series_data["time_series"]
# 计算统计特征
if not np.all(np.isnan(ts_data)):
processed_data["time_series_features"] = {
"mean": np.nanmean(ts_data),
"std": np.nanstd(ts_data),
"min": np.nanmin(ts_data),
"max": np.nanmax(ts_data),
"trend": np.polyfit(range(len(ts_data)),
np.nan_to_num(ts_data), 1)[0] if len(ts_data) > 1 else 0,
"first_value": ts_data[0] if not np.isnan(ts_data[0]) else 0,
"last_value": ts_data[-1] if not np.isnan(ts_data[-1]) else 0,
"length": len(ts_data)
}
# 处理元数据
if metadata is not None:
# 将元数据转换为文本描述
metadata_text = "卫星数据元信息:\n"
for key, value in metadata.items():
metadata_text += f"{key}: {value}\n"
processed_data["metadata_text"] = metadata_text
return processed_data为了有效融合不同类型的卫星数据,我们设计了专门的特征提取策略:
class ImageFeatureExtractor:
def __init__(self, backbone="resnet50", pretrained=True):
self.backbone = backbone
self.pretrained = pretrained
self.model = None
self.feature_dim = None
self._initialize_model()
def _initialize_model(self):
"""初始化特征提取模型"""
try:
import torch
import torchvision.models as models
from torchvision import transforms
# 加载预训练的骨干网络
if self.backbone == "resnet50":
self.model = models.resnet50(pretrained=self.pretrained)
# 移除最后的分类层
self.model = torch.nn.Sequential(*(list(self.model.children())[:-1]))
self.feature_dim = 2048
elif self.backbone == "efficientnet_b0":
self.model = models.efficientnet_b0(pretrained=self.pretrained)
self.model = torch.nn.Sequential(*(list(self.model.children())[:-1]))
self.feature_dim = 1280
elif self.backbone == "densenet121":
self.model = models.densenet121(pretrained=self.pretrained)
self.model = self.model.features
self.feature_dim = 1024
else:
raise ValueError(f"不支持的骨干网络: {self.backbone}")
# 设置为评估模式
self.model.eval()
# 定义图像预处理变换
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
print(f"图像特征提取器初始化完成,骨干网络:{self.backbone}")
except Exception as e:
print(f"初始化特征提取模型错误: {e}")
def extract_features(self, image_data, use_gpu=True):
"""提取图像特征"""
import torch
import numpy as np
try:
if self.model is None:
self._initialize_model()
data = image_data["data"].copy()
# 处理多波段数据
if data.shape[2] > 3:
# 对于多波段数据,选择前3个波段或进行波段融合
# 这里采用简单的PCA降维示例
data_reshaped = data.reshape(-1, data.shape[2])
# 移除NaN值
valid_indices = ~np.isnan(data_reshaped).any(axis=1)
valid_data = data_reshaped[valid_indices]
if len(valid_data) > 0:
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
reduced_data = pca.fit_transform(valid_data)
# 重建图像
result = np.zeros_like(data_reshaped)
result[valid_indices] = reduced_data
result = result.reshape(data.shape[0], data.shape[1], 3)
# 归一化到0-1范围
result = (result - result.min()) / (result.max() - result.min() + 1e-8)
data = result
else:
# 如果没有有效数据,使用随机噪声
data = np.random.rand(data.shape[0], data.shape[1], 3)
elif data.shape[2] == 1:
# 单波段数据,复制到3个通道
data = np.repeat(data, 3, axis=2)
# 确保数据在0-1范围内
data_min = data.min()
data_max = data.max()
if data_max > data_min:
data = (data - data_min) / (data_max - data_min)
# 转换为RGB格式(0-255)
data = (data * 255).astype(np.uint8)
# 应用预处理变换
input_tensor = self.transform(data)
input_tensor = input_tensor.unsqueeze(0) # 添加批次维度
# 移至GPU(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() and use_gpu else "cpu")
self.model = self.model.to(device)
input_tensor = input_tensor.to(device)
# 提取特征
with torch.no_grad():
features = self.model(input_tensor)
# 转换为numpy数组
features = features.squeeze().cpu().numpy()
return {
"features": features,
"feature_dim": self.feature_dim,
"backbone": self.backbone
}
except Exception as e:
print(f"提取图像特征错误: {e}")
return Noneclass TimeSeriesFeatureExtractor:
def __init__(self, config=None):
self.config = config or {
"window_size": 7,
"statistical_features": True,
"fft_features": True,
"wavelet_features": False,
"max_freq_components": 5
}
def extract_features(self, time_series_data):
"""提取时间序列特征"""
import numpy as np
try:
ts = time_series_data["time_series"]
# 移除NaN值
valid_ts = ts[~np.isnan(ts)]
if len(valid_ts) < 3:
print("有效数据点不足,无法提取特征")
return None
features = {}
# 基本统计特征
if self.config["statistical_features"]:
features.update({
"mean": np.mean(valid_ts),
"std": np.std(valid_ts),
"min": np.min(valid_ts),
"max": np.max(valid_ts),
"median": np.median(valid_ts),
"range": np.max(valid_ts) - np.min(valid_ts),
"skewness": self._calculate_skewness(valid_ts),
"kurtosis": self._calculate_kurtosis(valid_ts),
"percentiles_25": np.percentile(valid_ts, 25),
"percentiles_75": np.percentile(valid_ts, 75),
"percentiles_90": np.percentile(valid_ts, 90),
"zero_crossing_rate": self._calculate_zero_crossing_rate(valid_ts),
"trend": self._calculate_trend(valid_ts)
})
# FFT频域特征
if self.config["fft_features"]:
fft_features = self._extract_fft_features(valid_ts)
features.update(fft_features)
# 小波特征(可选)
if self.config["wavelet_features"]:
wavelet_features = self._extract_wavelet_features(valid_ts)
features.update(wavelet_features)
# 时序模式特征
features.update({
"autocorr_lag1": self._calculate_autocorrelation(valid_ts, lag=1),
"autocorr_lag5": self._calculate_autocorrelation(valid_ts, lag=5),
"seasonality_strength": self._detect_seasonality(valid_ts),
"entropy": self._calculate_sample_entropy(valid_ts)
})
return features
except Exception as e:
print(f"提取时间序列特征错误: {e}")
return None
def _calculate_skewness(self, data):
"""计算偏度"""
import scipy.stats as stats
return stats.skew(data)
def _calculate_kurtosis(self, data):
"""计算峰度"""
import scipy.stats as stats
return stats.kurtosis(data)
def _calculate_zero_crossing_rate(self, data):
"""计算过零率"""
zero_crossings = np.where(np.diff(np.signbit(data)))[0]
return len(zero_crossings) / len(data)
def _calculate_trend(self, data):
"""计算线性趋势"""
x = np.arange(len(data))
slope, _, _, _, _ = np.polyfit(x, data, 1, full=True)
return slope
def _extract_fft_features(self, data):
"""提取FFT频域特征"""
import numpy as np
# 应用汉宁窗
window = np.hanning(len(data))
windowed_data = data * window
# 计算FFT
fft_values = np.fft.fft(windowed_data)
frequencies = np.fft.fftfreq(len(data))
# 只考虑正频率
positive_freq_indices = frequencies > 0
fft_values = fft_values[positive_freq_indices]
frequencies = frequencies[positive_freq_indices]
# 计算幅度谱
magnitude = np.abs(fft_values)
# 提取主要频率成分
num_components = min(self.config["max_freq_components"], len(magnitude))
top_indices = np.argsort(magnitude)[-num_components:][::-1]
fft_features = {
"fft_total_power": np.sum(magnitude**2),
"fft_peak_power": np.max(magnitude),
"fft_peak_frequency": frequencies[top_indices[0]] if top_indices.size > 0 else 0
}
# 添加主要频率成分
for i, idx in enumerate(top_indices):
fft_features[f"fft_top_freq_{i+1}"] = frequencies[idx]
fft_features[f"fft_top_power_{i+1}"] = magnitude[idx]
return fft_features
def _extract_wavelet_features(self, data):
"""提取小波特征"""
try:
import pywt
# 使用db4小波进行4层分解
coeffs = pywt.wavedec(data, 'db4', level=4)
wavelet_features = {}
# 近似系数的统计特征
wavelet_features["wavelet_approx_mean"] = np.mean(coeffs[0])
wavelet_features["wavelet_approx_std"] = np.std(coeffs[0])
# 详细系数的统计特征
for i, detail in enumerate(coeffs[1:], 1):
wavelet_features[f"wavelet_detail_{i}_mean"] = np.mean(detail)
wavelet_features[f"wavelet_detail_{i}_std"] = np.std(detail)
wavelet_features[f"wavelet_detail_{i}_energy"] = np.sum(detail**2)
return wavelet_features
except ImportError:
print("未安装pywt库,无法提取小波特征")
return {}
except Exception as e:
print(f"提取小波特征错误: {e}")
return {}
def _calculate_autocorrelation(self, data, lag=1):
"""计算自相关系数"""
import numpy as np
if lag >= len(data):
return 0
# 移除均值
data_mean = np.mean(data)
data_centered = data - data_mean
# 计算自相关
numerator = np.sum(data_centered[:-lag] * data_centered[lag:])
denominator = np.sum(data_centered**2)
if denominator > 0:
return numerator / denominator
else:
return 0
def _detect_seasonality(self, data):
"""检测季节性强度"""
# 简化的季节性检测,计算不同滞后期的自相关系数
max_lag = min(20, len(data) // 2)
autocorrelations = [self._calculate_autocorrelation(data, lag=i) for i in range(1, max_lag+1)]
# 季节性强度可以定义为最大自相关系数
return max(autocorrelations) if autocorrelations else 0
def _calculate_sample_entropy(self, data, m=2, r=0.1):
"""计算样本熵"""
import numpy as np
n = len(data)
if n <= m:
return 0
# 设置阈值r为数据标准差的一部分
if isinstance(r, float):
r = r * np.std(data)
# 创建嵌入向量
def _embed(x, d, t):
N = len(x) - (d-1)*t
return np.array([x[i:i+(d*t):t] for i in range(N)])
# 计算相似模式的数量
def _count_patterns(x, m, r):
xm = _embed(x, m, 1)
count = 0
for i in range(len(xm)):
# 计算与其他向量的距离
dist = np.max(np.abs(xm - xm[i]), axis=1)
# 统计距离小于r的向量数量
count += np.sum(dist <= r) - 1 # 减去自己
return count
# 计算样本熵
B = _count_patterns(data, m, r) / (n - m + 1)
A = _count_patterns(data, m + 1, r) / (n - m)
if B > 0 and A > 0:
return -np.log(A / B)
else:
return 0class TextFeatureExtractor:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
self.model_name = model_name
self.model = None
self.tokenizer = None
self.feature_dim = None
self._initialize_model()
def _initialize_model(self):
"""初始化文本特征提取模型"""
try:
from sentence_transformers import SentenceTransformer
# 加载预训练模型
self.model = SentenceTransformer(self.model_name)
self.feature_dim = self.model.get_sentence_embedding_dimension()
print(f"文本特征提取器初始化完成,模型:{self.model_name}")
except Exception as e:
print(f"初始化文本特征提取模型错误: {e}")
def extract_features(self, text, max_length=512):
"""提取文本特征"""
try:
if self.model is None:
self._initialize_model()
# 如果是字典,转换为文本
if isinstance(text, dict):
text = " ".join([f"{k}: {v}" for k, v in text.items()])
# 截断过长文本
if len(text) > max_length:
text = text[:max_length]
# 生成嵌入向量
embedding = self.model.encode(text)
# 提取基本统计特征
import numpy as np
stats = {
"text_length": len(text),
"word_count": len(text.split()),
"embedding_mean": np.mean(embedding),
"embedding_std": np.std(embedding),
"embedding_norm": np.linalg.norm(embedding)
}
return {
"embedding": embedding,
"stats": stats,
"feature_dim": self.feature_dim
}
except Exception as e:
print(f"提取文本特征错误: {e}")
return None
def create_climate_description(self, data_dict):
"""为气候数据创建自然语言描述"""
try:
description = "气候数据分析:\n\n"
# 添加卫星图像信息
if "image_metadata" in data_dict:
img_meta = data_dict["image_metadata"]
description += "卫星图像信息:\n"
if "platform" in img_meta:
description += f"- 卫星平台: {img_meta['platform']}\n"
if "sensor" in img_meta:
description += f"- 传感器: {img_meta['sensor']}\n"
if "acquisition_date" in img_meta:
description += f"- 获取时间: {img_meta['acquisition_date']}\n"
if "resolution" in img_meta:
description += f"- 空间分辨率: {img_meta['resolution']}\n"
description += "\n"
# 添加时间序列数据统计
if "time_series_stats" in data_dict:
ts_stats = data_dict["time_series_stats"]
description += "时间序列统计:\n"
if "mean" in ts_stats:
description += f"- 平均值: {ts_stats['mean']:.2f}\n"
if "trend" in ts_stats:
trend_direction = "上升" if ts_stats['trend'] > 0 else "下降"
description += f"- 趋势: {trend_direction} ({ts_stats['trend']:.4f}/单位时间)\n"
if "seasonality_strength" in ts_stats:
seasonality = "强" if ts_stats['seasonality_strength'] > 0.5 else "弱"
description += f"- 季节性: {seasonality} (强度: {ts_stats['seasonality_strength']:.2f})\n"
description += "\n"
# 添加地理位置信息
if "location_info" in data_dict:
loc_info = data_dict["location_info"]
description += "地理位置信息:\n"
if "name" in loc_info:
description += f"- 位置名称: {loc_info['name']}\n"
if "coordinates" in loc_info:
description += f"- 坐标: 经度 {loc_info['coordinates'][0]}, 纬度 {loc_info['coordinates'][1]}\n"
if "elevation" in loc_info:
description += f"- 海拔: {loc_info['elevation']} 米\n"
description += "\n"
# 添加气候异常信息
if "anomalies" in data_dict:
anomalies = data_dict["anomalies"]
description += "检测到的异常:\n"
for anomaly in anomalies:
description += f"- {anomaly}\n"
description += "\n"
return description
except Exception as e:
print(f"创建气候描述错误: {e}")
return "无法生成气候数据描述"我们设计了一个基于大型语言模型的多模态融合框架,用于整合卫星图像、时间序列数据和文本描述。该架构主要包含以下几个核心组件:
以下是架构设计的核心实现:
class LLMMultimodalFusion:
def __init__(self, config=None):
self.config = config or {
"llm_model": "mistralai/Mistral-7B-v0.1",
"embedding_dim": 768,
"fusion_strategy": "cross_attention",
"temperature": 0.7,
"max_new_tokens": 512
}
# 初始化模态编码器
self.image_encoder = ImageFeatureExtractor()
self.time_series_encoder = TimeSeriesFeatureExtractor()
self.text_encoder = TextFeatureExtractor()
# 初始化LLM
self.llm = None
self.tokenizer = None
self._initialize_llm()
# 初始化跨模态投影层
self.cross_modal_projection = self._build_cross_modal_projection()
print("LLM多模态融合架构初始化完成")
def _initialize_llm(self):
"""初始化LLM模型"""
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# 加载模型和分词器
self.tokenizer = AutoTokenizer.from_pretrained(self.config["llm_model"])
# 添加特殊标记用于多模态输入
self._add_special_tokens()
# 加载模型(使用量化以减少内存使用)
self.llm = AutoModelForCausalLM.from_pretrained(
self.config["llm_model"],
load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16
)
self.llm.eval()
print(f"LLM模型 {self.config['llm_model']} 已加载")
except Exception as e:
print(f"初始化LLM模型错误: {e}")
def _add_special_tokens(self):
"""添加特殊标记用于区分不同模态"""
special_tokens = {
"additional_special_tokens": [
"<image_start>", "<image_end>",
"<time_series_start>", "<time_series_end>",
"<text_start>", "<text_end>",
"<fusion_start>", "<fusion_end>",
"<task_description_start>", "<task_description_end>"
]
}
# 添加特殊标记
self.tokenizer.add_special_tokens(special_tokens)
def _build_cross_modal_projection(self):
"""构建跨模态投影层"""
try:
import torch
import torch.nn as nn
# 图像特征投影
image_projection = nn.Sequential(
nn.Linear(self.image_encoder.feature_dim, 1024),
nn.LayerNorm(1024),
nn.ReLU(),
nn.Linear(1024, self.config["embedding_dim"])
)
# 时间序列特征投影
# 假设时间序列特征维度为100(实际应根据提取的特征数量调整)
ts_projection = nn.Sequential(
nn.Linear(50, 512), # 假设提取了50个时间序列特征
nn.LayerNorm(512),
nn.ReLU(),
nn.Linear(512, self.config["embedding_dim"])
)
# 文本特征投影(如果需要)
# 文本编码器可能已经生成了合适维度的嵌入
text_projection = nn.Linear(self.text_encoder.feature_dim, self.config["embedding_dim"])
# 将所有投影层移至适当的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_projection = image_projection.to(device)
ts_projection = ts_projection.to(device)
text_projection = text_projection.to(device)
return {
"image": image_projection,
"time_series": ts_projection,
"text": text_projection
}
except Exception as e:
print(f"构建跨模态投影层错误: {e}")
return None
def encode_multimodal_inputs(self, image_data, time_series_data, text_data):
"""编码多模态输入数据"""
encoded_features = {}
# 编码图像数据
if image_data is not None:
image_features = self.image_encoder.extract_features(image_data)
if image_features is not None:
encoded_features["image"] = image_features["features"]
# 编码时间序列数据
if time_series_data is not None:
ts_features = self.time_series_encoder.extract_features(time_series_data)
if ts_features is not None:
# 将字典转换为向量
import numpy as np
ts_vector = np.array([ts_features[k] for k in sorted(ts_features.keys())])
encoded_features["time_series"] = ts_vector
# 编码文本数据
if text_data is not None:
text_features = self.text_encoder.extract_features(text_data)
if text_features is not None:
encoded_features["text"] = text_features["embedding"]
return encoded_features
def project_to_shared_space(self, encoded_features):
"""将不同模态特征投影到共享语义空间"""
import torch
projected_features = {}
# 投影图像特征
if "image" in encoded_features and "image" in self.cross_modal_projection:
img_tensor = torch.tensor(encoded_features["image"], dtype=torch.float32).unsqueeze(0)
device = next(self.cross_modal_projection["image"].parameters()).device
img_tensor = img_tensor.to(device)
with torch.no_grad():
projected_features["image"] = self.cross_modal_projection["image"](img_tensor).cpu().numpy()
# 投影时间序列特征
if "time_series" in encoded_features and "time_series" in self.cross_modal_projection:
ts_tensor = torch.tensor(encoded_features["time_series"], dtype=torch.float32).unsqueeze(0)
device = next(self.cross_modal_projection["time_series"].parameters()).device
ts_tensor = ts_tensor.to(device)
with torch.no_grad():
projected_features["time_series"] = self.cross_modal_projection["time_series"](ts_tensor).cpu().numpy()
# 投影文本特征(可选,因为文本编码器可能已经生成了合适的嵌入)
if "text" in encoded_features and "text" in self.cross_modal_projection:
text_tensor = torch.tensor(encoded_features["text"], dtype=torch.float32).unsqueeze(0)
device = next(self.cross_modal_projection["text"].parameters()).device
text_tensor = text_tensor.to(device)
with torch.no_grad():
projected_features["text"] = self.cross_modal_projection["text"](text_tensor).cpu().numpy()
return projected_features
def create_prompt(self, projected_features, task_description):
"""创建LLM输入提示"""
prompt = f"<task_description_start>{task_description}<task_description_end>\n\n"
# 添加各模态特征描述
if "image" in projected_features:
prompt += "<image_start>卫星图像特征已提取<image_end>\n"
if "time_series" in projected_features:
prompt += "<time_series_start>时间序列特征已提取<time_series_end>\n"
if "text" in projected_features:
prompt += "<text_start>文本信息已处理<text_end>\n"
prompt += "\n<fusion_start>基于以上多模态信息,请提供详细的分析结果:<fusion_end>\n"
return prompt
def generate_analysis(self, prompt):
"""使用LLM生成分析结果"""
try:
import torch
# 编码提示
inputs = self.tokenizer(prompt, return_tensors="pt")
device = next(self.llm.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# 生成响应
with torch.no_grad():
outputs = self.llm.generate(
**inputs,
max_new_tokens=self.config["max_new_tokens"],
temperature=self.config["temperature"],
top_p=0.9,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
# 解码响应
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# 提取分析部分(去掉输入提示)
analysis_start = "基于以上多模态信息,请提供详细的分析结果:"
if analysis_start in response:
analysis = response.split(analysis_start)[1].strip()
return analysis
else:
return response
except Exception as e:
print(f"生成分析结果错误: {e}")
return "无法生成分析结果"
def process_multimodal_data(self, image_data=None, time_series_data=None,
text_data=None, task_description="请分析这些气候数据并提供见解。"):
"""处理多模态数据并生成分析"""
# 1. 编码多模态输入
encoded_features = self.encode_multimodal_inputs(image_data, time_series_data, text_data)
# 2. 投影到共享空间
projected_features = self.project_to_shared_space(encoded_features)
# 3. 创建LLM提示
prompt = self.create_prompt(projected_features, task_description)
# 4. 生成分析
analysis = self.generate_analysis(prompt)
return {
"analysis": analysis,
"encoded_features": encoded_features,
"projected_features": projected_features,
"prompt": prompt
}为了有效捕捉不同模态信息之间的关联,我们设计了一个专门的跨模态注意力机制:
class CrossModalAttention:
def __init__(self, hidden_dim=768, num_heads=8, dropout_rate=0.1):
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.dropout_rate = dropout_rate
# 初始化注意力层
self.attention = self._build_attention()
print("跨模态注意力机制初始化完成")
def _build_attention(self):
"""构建跨模态注意力层"""
try:
import torch
import torch.nn as nn
# 多头注意力
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_dim, num_heads, dropout_rate):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.head_dim = hidden_dim // num_heads
# 确保隐藏维度可以被头数整除
assert self.head_dim * num_heads == hidden_dim, "hidden_dim must be divisible by num_heads"
# 线性投影层
self.q_proj = nn.Linear(hidden_dim, hidden_dim)
self.k_proj = nn.Linear(hidden_dim, hidden_dim)
self.v_proj = nn.Linear(hidden_dim, hidden_dim)
self.out_proj = nn.Linear(hidden_dim, hidden_dim)
# Dropout层
self.dropout = nn.Dropout(dropout_rate)
# LayerNorm层
self.layer_norm = nn.LayerNorm(hidden_dim)
def forward(self, query, key, value, attention_mask=None):
batch_size = query.size(0)
# 线性投影
q = self.q_proj(query).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(key).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(value).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
# 缩放点积注意力
scale = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / scale
# 应用注意力掩码
if attention_mask is not None:
attn_scores = attn_scores + attention_mask
# Softmax归一化
attn_weights = torch.softmax(attn_scores, dim=-1)
attn_weights = self.dropout(attn_weights)
# 加权求和
context = torch.matmul(attn_weights, v)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_dim)
# 输出投影
output = self.out_proj(context)
output = self.layer_norm(output + query) # 残差连接
return output, attn_weights
# 创建注意力层
attention = MultiHeadAttention(
hidden_dim=self.hidden_dim,
num_heads=self.num_heads,
dropout_rate=self.dropout_rate
)
# 移至适当的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
attention = attention.to(device)
return attention
except Exception as e:
print(f"构建注意力层错误: {e}")
return None
def create_attention_mask(self, query_length, key_length):
"""创建注意力掩码"""
import torch
# 这里简单返回None,实际应用中可能需要更复杂的掩码
return None
def fuse_modalities(self, modalities):
"""融合多种模态的特征"""
import torch
if not modalities:
print("没有模态数据可供融合")
return None
try:
# 将模态特征转换为张量
modality_tensors = []
modality_keys = []
for key, feature in modalities.items():
if feature is not None:
# 确保特征是二维的 (batch_size, hidden_dim)
if len(feature.shape) == 1:
tensor = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
elif len(feature.shape) == 2:
tensor = torch.tensor(feature, dtype=torch.float32).unsqueeze(0)
else:
tensor = torch.tensor(feature, dtype=torch.float32)
modality_tensors.append(tensor)
modality_keys.append(key)
if not modality_tensors:
print("没有有效的模态特征可供融合")
return None
# 移至设备
device = next(self.attention.parameters()).device
modality_tensors = [tensor.to(device) for tensor in modality_tensors]
# 初始化融合特征
fused_features = modality_tensors[0]
# 逐模态融合
for i in range(1, len(modality_tensors)):
# 使用多头注意力融合当前模态与累积特征
mask = self.create_attention_mask(
fused_features.size(1),
modality_tensors[i].size(1)
)
# 交叉注意力
with torch.no_grad():
output, _ = self.attention(
query=fused_features,
key=modality_tensors[i],
value=modality_tensors[i],
attention_mask=mask
)
# 更新融合特征
# 可以使用不同的融合策略
fused_features = torch.cat([fused_features, output], dim=1)
# 计算自注意力,整合所有模态信息
with torch.no_grad():
final_output, attention_weights = self.attention(
query=fused_features,
key=fused_features,
value=fused_features
)
return {
"fused_features": final_output.cpu().numpy(),
"attention_weights": attention_weights.cpu().numpy(),
"modalities_used": modality_keys
}
except Exception as e:
print(f"融合模态特征错误: {e}")
return None
def visualize_attention(self, attention_weights, modalities):
"""可视化注意力权重"""
try:
import matplotlib.pyplot as plt
import numpy as np
# 简化的可视化示例
plt.figure(figsize=(10, 8))
# 取第一个头的注意力权重作为示例
if len(attention_weights.shape) >= 4:
attention_to_plot = attention_weights[0, 0, :, :]
else:
attention_to_plot = attention_weights[0, :, :]
# 创建热力图
plt.imshow(attention_to_plot, cmap='viridis')
plt.colorbar(label='注意力权重')
plt.title('跨模态注意力可视化')
# 设置坐标轴标签
if modalities:
plt.xlabel('键模态')
plt.ylabel('查询模态')
# 保存图像
plt.savefig('cross_modal_attention.png')
plt.close()
print("注意力可视化已保存到 cross_modal_attention.png")
return True
except Exception as e:
print(f"可视化注意力权重错误: {e}")
return False气候数据具有复杂的时空特性,我们设计了专门的时空关联建模模块:
class SpatioTemporalModel:
def __init__(self, config=None):
self.config = config or {
"spatial_encoding_dim": 128,
"temporal_encoding_dim": 128,
"num_spatial_layers": 2,
"num_temporal_layers": 2,
"dropout_rate": 0.1
}
# 初始化空间和时间编码器
self.spatial_encoder = self._build_spatial_encoder()
self.temporal_encoder = self._build_temporal_encoder()
self.spatio_temporal_fusion = self._build_fusion_module()
print("时空关联建模模块初始化完成")
def _build_spatial_encoder(self):
"""构建空间编码器"""
try:
import torch
import torch.nn as nn
class SpatialEncoder(nn.Module):
def __init__(self, input_dim, encoding_dim, num_layers, dropout_rate):
super().__init__()
# 构建多层感知机
layers = []
prev_dim = input_dim
for _ in range(num_layers - 1):
layers.extend([
nn.Linear(prev_dim, prev_dim // 2),
nn.LayerNorm(prev_dim // 2),
nn.ReLU(),
nn.Dropout(dropout_rate)
])
prev_dim = prev_dim // 2
# 输出层
layers.append(nn.Linear(prev_dim, encoding_dim))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
# 创建空间编码器
spatial_encoder = SpatialEncoder(
input_dim=2, # 经度和纬度
encoding_dim=self.config["spatial_encoding_dim"],
num_layers=self.config["num_spatial_layers"],
dropout_rate=self.config["dropout_rate"]
)
# 移至适当的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
spatial_encoder = spatial_encoder.to(device)
return spatial_encoder
except Exception as e:
print(f"构建空间编码器错误: {e}")
return None
def _build_temporal_encoder(self):
"""构建时间编码器"""
try:
import torch
import torch.nn as nn
class TemporalEncoder(nn.Module):
def __init__(self, input_dim, encoding_dim, num_layers, dropout_rate):
super().__init__()
# 构建时间编码器
self.rnn = nn.GRU(
input_size=input_dim,
hidden_size=encoding_dim,
num_layers=num_layers,
batch_first=True,
dropout=dropout_rate if num_layers > 1 else 0,
bidirectional=True
)
# 最终投影层
self.projection = nn.Linear(encoding_dim * 2, encoding_dim)
self.layer_norm = nn.LayerNorm(encoding_dim)
def forward(self, x):
# 处理变长序列
batch_size, seq_len, _ = x.size()
# 应用GRU
outputs, _ = self.rnn(x)
# 取最后时间步的输出
last_output = outputs[:, -1, :]
# 投影到目标维度
output = self.projection(last_output)
output = self.layer_norm(output)
return output
# 创建时间编码器
temporal_encoder = TemporalEncoder(
input_dim=1, # 假设每个时间步只有一个特征
encoding_dim=self.config["temporal_encoding_dim"],
num_layers=self.config["num_temporal_layers"],
dropout_rate=self.config["dropout_rate"]
)
# 移至适当的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
temporal_encoder = temporal_encoder.to(device)
return temporal_encoder
except Exception as e:
print(f"构建时间编码器错误: {e}")
return None
def _build_fusion_module(self):
"""构建时空融合模块"""
try:
import torch
import torch.nn as nn
class SpatioTemporalFusion(nn.Module):
def __init__(self, spatial_dim, temporal_dim, hidden_dim):
super().__init__()
# 融合层
self.fusion = nn.Sequential(
nn.Linear(spatial_dim + temporal_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim)
)
# 门控机制
self.gate = nn.Sequential(
nn.Linear(spatial_dim + temporal_dim, hidden_dim),
nn.Sigmoid()
)
def forward(self, spatial_features, temporal_features):
# 特征拼接
combined = torch.cat([spatial_features, temporal_features], dim=-1)
# 融合特征
fused = self.fusion(combined)
# 应用门控
gate = self.gate(combined)
gated_output = fused * gate
return gated_output
# 创建时空融合模块
hidden_dim = self.config["spatial_encoding_dim"] + self.config["temporal_encoding_dim"]
fusion_module = SpatioTemporalFusion(
spatial_dim=self.config["spatial_encoding_dim"],
temporal_dim=self.config["temporal_encoding_dim"],
hidden_dim=hidden_dim
)
# 移至适当的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fusion_module = fusion_module.to(device)
return fusion_module
except Exception as e:
print(f"构建时空融合模块错误: {e}")
return None
def encode_spatial(self, coordinates):
"""编码空间坐标"""
import torch
try:
# 准备输入
coords_tensor = torch.tensor(coordinates, dtype=torch.float32).unsqueeze(0)
# 移至设备
device = next(self.spatial_encoder.parameters()).device
coords_tensor = coords_tensor.to(device)
# 编码
with torch.no_grad():
spatial_encoding = self.spatial_encoder(coords_tensor)
return spatial_encoding.cpu().numpy()
except Exception as e:
print(f"编码空间坐标错误: {e}")
return None
def encode_temporal(self, time_series):
"""编码时间序列"""
import torch
import numpy as np
try:
# 准备输入
# 移除NaN值
valid_ts = time_series[~np.isnan(time_series)]
if len(valid_ts) < 3:
print("有效时间序列数据不足")
return None
# 重塑为(batch_size, seq_len, input_dim)
ts_tensor = torch.tensor(valid_ts, dtype=torch.float32).unsqueeze(0).unsqueeze(-1)
# 移至设备
device = next(self.temporal_encoder.parameters()).device
ts_tensor = ts_tensor.to(device)
# 编码
with torch.no_grad():
temporal_encoding = self.temporal_encoder(ts_tensor)
return temporal_encoding.cpu().numpy()
except Exception as e:
print(f"编码时间序列错误: {e}")
return None
def fuse_spatio_temporal(self, spatial_encoding, temporal_encoding):
"""融合时空编码"""
import torch
try:
# 准备输入
spatial_tensor = torch.tensor(spatial_encoding, dtype=torch.float32)
temporal_tensor = torch.tensor(temporal_encoding, dtype=torch.float32)
# 移至设备
device = next(self.spatio_temporal_fusion.parameters()).device
spatial_tensor = spatial_tensor.to(device)
temporal_tensor = temporal_tensor.to(device)
# 融合
with torch.no_grad():
fused = self.spatio_temporal_fusion(spatial_tensor, temporal_tensor)
return fused.cpu().numpy()
except Exception as e:
print(f"融合时空编码错误: {e}")
return None
def detect_spatio_temporal_patterns(self, data_points):
"""检测时空模式"""
import numpy as np
try:
if not data_points:
print("没有数据点可供分析")
return None
# 提取坐标和时间序列
coordinates = np.array([point["coordinates"] for point in data_points])
time_series_list = [point["time_series"] for point in data_points]
# 对每个数据点进行时空编码和融合
fused_features = []
valid_indices = []
for i, (coords, ts) in enumerate(zip(coordinates, time_series_list)):
# 编码空间信息
spatial_enc = self.encode_spatial(coords)
if spatial_enc is None:
continue
# 编码时间信息
temporal_enc = self.encode_temporal(ts)
if temporal_enc is None:
continue
# 融合时空特征
fused = self.fuse_spatio_temporal(spatial_enc, temporal_enc)
if fused is not None:
fused_features.append(fused.flatten())
valid_indices.append(i)
if not fused_features:
print("无法生成有效的时空特征")
return None
# 转换为数组
fused_features = np.array(fused_features)
# 简单的聚类分析,检测时空模式
from sklearn.cluster import DBSCAN
# 使用DBSCAN聚类
clustering = DBSCAN(eps=0.3, min_samples=2).fit(fused_features)
labels = clustering.labels_
# 分析聚类结果
patterns = {}
for i, label in enumerate(labels):
if label not in patterns:
patterns[label] = []
original_index = valid_indices[i]
patterns[label].append({
"data_point": data_points[original_index],
"feature_vector": fused_features[i]
})
# 识别异常点(标签为-1的点)
anomalies = [p for i, p in enumerate(valid_indices) if labels[i] == -1]
return {
"patterns": patterns,
"anomalies": anomalies,
"total_patterns": len(patterns),
"total_anomalies": len(anomalies)
}
except Exception as e:
print(f"检测时空模式错误: {e}")
return None卫星图像是气候数据分析的重要数据源,包含了丰富的地表和大气信息。以下是我们开发的卫星图像分析模块:
class SatelliteImageAnalyzer:
def __init__(self, config=None):
self.config = config or {
"image_size": (224, 224),
"feature_extractor_model": "resnet50",
"segmentation_model": "deeplabv3_resnet101",
"num_classes": 19, # ESA WorldCover 分类数
"device": "cuda" if torch.cuda.is_available() else "cpu"
}
# 初始化模型
self.feature_extractor = None
self.segmentation_model = None
self.image_preprocessor = None
self._initialize_models()
# 初始化分析工具
self.climate_phenomena_detector = ClimatePhenomenaDetector()
print("卫星图像分析器初始化完成")
def _initialize_models(self):
"""初始化图像分析模型"""
try:
import torch
import torchvision.transforms as transforms
from torchvision import models
# 设置设备
device = torch.device(self.config["device"])
# 初始化预处理器
self.image_preprocessor = transforms.Compose([
transforms.Resize(self.config["image_size"]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 初始化特征提取器
if self.config["feature_extractor_model"] == "resnet50":
self.feature_extractor = models.resnet50(pretrained=True)
# 移除最后一层全连接层
self.feature_extractor = torch.nn.Sequential(*list(self.feature_extractor.children())[:-1])
self.feature_extractor.eval()
self.feature_extractor = self.feature_extractor.to(device)
# 初始化分割模型
if self.config["segmentation_model"] == "deeplabv3_resnet101":
self.segmentation_model = models.segmentation.deeplabv3_resnet101(pretrained=True)
self.segmentation_model.eval()
self.segmentation_model = self.segmentation_model.to(device)
print("图像分析模型初始化完成")
except Exception as e:
print(f"初始化图像分析模型错误: {e}")
def load_image(self, image_path):
"""加载并预处理图像"""
try:
from PIL import Image
import numpy as np
# 加载图像
image = Image.open(image_path).convert('RGB')
original_size = image.size
# 预处理
preprocessed_image = self.image_preprocessor(image)
return {
"original": np.array(image),
"preprocessed": preprocessed_image,
"original_size": original_size
}
except Exception as e:
print(f"加载图像错误: {e}")
return None
def extract_features(self, image_data):
"""从图像中提取特征"""
try:
import torch
if self.feature_extractor is None:
print("特征提取器未初始化")
return None
# 确保图像数据是正确的格式
if isinstance(image_data, dict):
image_tensor = image_data["preprocessed"]
else:
image_tensor = image_data
# 添加批次维度
if len(image_tensor.shape) == 3:
image_tensor = image_tensor.unsqueeze(0)
# 移至设备
device = torch.device(self.config["device"])
image_tensor = image_tensor.to(device)
# 提取特征
with torch.no_grad():
features = self.feature_extractor(image_tensor)
# 展平特征向量
features = features.squeeze().cpu().numpy()
return {
"features": features,
"shape": features.shape
}
except Exception as e:
print(f"提取图像特征错误: {e}")
return None
def segment_image(self, image_data):
"""对图像进行语义分割"""
try:
import torch
import numpy as np
if self.segmentation_model is None:
print("分割模型未初始化")
return None
# 确保图像数据是正确的格式
if isinstance(image_data, dict):
image_tensor = image_data["preprocessed"]
original_size = image_data["original_size"]
else:
image_tensor = image_data
original_size = self.config["image_size"]
# 添加批次维度
if len(image_tensor.shape) == 3:
image_tensor = image_tensor.unsqueeze(0)
# 移至设备
device = torch.device(self.config["device"])
image_tensor = image_tensor.to(device)
# 进行分割
with torch.no_grad():
output = self.segmentation_model(image_tensor)['out']
# 获取预测类别
pred = output.argmax(1).squeeze().cpu().numpy()
# 调整回原始大小
from PIL import Image
pred_img = Image.fromarray(pred.astype(np.uint8))
pred_resized = pred_img.resize(original_size, Image.NEAREST)
pred_resized = np.array(pred_resized)
return {
"segmentation": pred_resized,
"class_distribution": np.bincount(pred_resized.flatten())
}
except Exception as e:
print(f"图像分割错误: {e}")
return None
def detect_climate_phenomena(self, image_data, time_series=None):
"""检测气候现象"""
try:
# 提取图像特征
features = self.extract_features(image_data)
if features is None:
return None
# 图像分割
segmentation = self.segment_image(image_data)
if segmentation is None:
return None
# 使用专门的检测器分析气候现象
phenomena = self.climate_phenomena_detector.detect(
features["features"],
segmentation["segmentation"],
time_series
)
return phenomena
except Exception as e:
print(f"检测气候现象错误: {e}")
return None
def generate_climate_description(self, image_path, time_series=None):
"""生成图像内容的气候描述"""
try:
# 加载图像
image_data = self.load_image(image_path)
if image_data is None:
return "无法加载图像"
# 检测气候现象
phenomena = self.detect_climate_phenomena(image_data, time_series)
# 生成描述
description_parts = []
description_parts.append("卫星图像分析结果:")
# 添加分割结果描述
if phenomena and "land_cover" in phenomena:
land_cover = phenomena["land_cover"]
description_parts.append(f"\n地表覆盖类型:")
for cover_type, percentage in land_cover.items():
description_parts.append(f"- {cover_type}: {percentage:.1f}%")
# 添加检测到的气候现象
if phenomena and "detected_phenomena" in phenomena:
detected = phenomena["detected_phenomena"]
description_parts.append(f"\n检测到的气候现象:")
for phenomenon, confidence in detected.items():
description_parts.append(f"- {phenomenon}: 置信度 {confidence:.2f}")
# 添加异常分析
if phenomena and "anomalies" in phenomena:
anomalies = phenomena["anomalies"]
if anomalies:
description_parts.append(f"\n异常现象:")
for anomaly in anomalies:
description_parts.append(f"- {anomaly}")
else:
description_parts.append("\n未检测到明显异常现象。")
# 合并描述
return "\n".join(description_parts)
except Exception as e:
print(f"生成气候描述错误: {e}")
return "无法生成图像分析描述"
class ClimatePhenomenaDetector:
def __init__(self):
# 定义常见气候现象的特征和分类阈值
self.phenomena_patterns = {
"deforestation": {
"min_change": 0.15, # 最小变化百分比
"reference_class": 4, # 森林类别
"target_class": 1, # 裸地类别
"confidence_threshold": 0.7
},
"urban_expansion": {
"min_change": 0.05,
"reference_classes": [0, 2], # 水体和植被
"target_class": 7, # 建筑类别
"confidence_threshold": 0.6
},
"glacier_melt": {
"min_change": 0.2,
"reference_class": 15,
"target_class": 0,
"confidence_threshold": 0.65
},
"flooding": {
"min_change": 0.1,
"reference_classes": [1, 2, 4], # 裸地、植被、森林
"target_class": 0, # 水体
"confidence_threshold": 0.75
},
"drought": {
"min_change": 0.15,
"reference_class": 2, # 植被
"target_classes": [1, 8], # 裸地、旱地
"confidence_threshold": 0.6
}
}
# 土地覆盖类别映射
self.land_cover_classes = {
0: "水体",
1: "裸地",
2: "草本植被",
3: "灌木",
4: "森林",
5: "苔原",
6: "封闭灌丛",
7: "建筑区",
8: "旱地",
9: "永久性雪/冰",
10: "草地",
11: "湿地",
12: "农作物",
13: "红树林",
14: "苔藓",
15: "冰川",
16: "沙漠",
17: "河口",
18: "珊瑚礁"
}
def detect(self, image_features, segmentation_map, time_series=None):
"""检测气候相关现象"""
import numpy as np
results = {
"land_cover": {},
"detected_phenomena": {},
"anomalies": []
}
try:
# 计算土地覆盖分布
unique, counts = np.unique(segmentation_map, return_counts=True)
total_pixels = np.sum(counts)
for u, c in zip(unique, counts):
if u in self.land_cover_classes:
class_name = self.land_cover_classes[u]
percentage = (c / total_pixels) * 100
results["land_cover"][class_name] = percentage
# 检测气候现象
for phenomenon, pattern in self.phenomena_patterns.items():
confidence = self._detect_phenomenon(segmentation_map, pattern)
if confidence > pattern["confidence_threshold"]:
results["detected_phenomena"][phenomenon] = confidence
# 如果有时间序列数据,进行更深入的分析
if time_series is not None:
time_anomalies = self._analyze_time_series(time_series)
if time_anomalies:
results["anomalies"].extend(time_anomalies)
# 检查异常情况
self._check_for_anomalies(results, segmentation_map)
return results
except Exception as e:
print(f"检测气候现象错误: {e}")
return results
def _detect_phenomenon(self, segmentation_map, pattern):
"""检测特定气候现象"""
import numpy as np
try:
# 计算参考类别和目标类别的像素数
unique, counts = np.unique(segmentation_map, return_counts=True)
pixel_counts = dict(zip(unique, counts))
total_pixels = np.sum(counts)
# 检查参考类别
reference_pixels = 0
if "reference_class" in pattern:
if pattern["reference_class"] in pixel_counts:
reference_pixels = pixel_counts[pattern["reference_class"]]
elif "reference_classes" in pattern:
for ref_class in pattern["reference_classes"]:
if ref_class in pixel_counts:
reference_pixels += pixel_counts[ref_class]
# 检查目标类别
target_pixels = 0
if "target_class" in pattern:
if pattern["target_class"] in pixel_counts:
target_pixels = pixel_counts[pattern["target_class"]]
elif "target_classes" in pattern:
for target_class in pattern["target_classes"]:
if target_class in pixel_counts:
target_pixels += pixel_counts[target_class]
# 计算置信度(简化示例)
# 实际应用中可能需要更复杂的逻辑,如纹理分析、空间分布等
if reference_pixels == 0:
return 0.0
# 基于类别比例计算置信度
confidence = min(1.0, (target_pixels / total_pixels) * 10)
# 如果有最小变化要求,应用该要求
if "min_change" in pattern:
if target_pixels / total_pixels < pattern["min_change"]:
confidence = confidence * 0.5 # 降低置信度
return confidence
except Exception as e:
print(f"检测特定气候现象错误: {e}")
return 0.0
def _analyze_time_series(self, time_series):
"""分析时间序列数据以检测异常"""
import numpy as np
from scipy import stats
anomalies = []
try:
# 移除NaN值
valid_data = time_series[~np.isnan(time_series)]
if len(valid_data) < 10:
return anomalies
# 使用Z-score检测异常值
z_scores = np.abs(stats.zscore(valid_data))
threshold = 3.0 # Z-score阈值
# 查找异常值索引
anomaly_indices = np.where(z_scores > threshold)[0]
# 如果发现异常值,添加到结果中
if len(anomaly_indices) > 0:
anomaly_percentage = (len(anomaly_indices) / len(valid_data)) * 100
anomalies.append(f"检测到{anomaly_percentage:.1f}%的时间序列异常值")
# 检查趋势
x = np.arange(len(valid_data))
slope, _, r_value, _, _ = stats.linregress(x, valid_data)
# 如果趋势显著
if abs(r_value) > 0.7:
trend_direction = "上升" if slope > 0 else "下降"
anomalies.append(f"观察到显著的{trend_direction}趋势")
return anomalies
except Exception as e:
print(f"分析时间序列错误: {e}")
return anomalies
def _check_for_anomalies(self, results, segmentation_map):
"""检查土地覆盖异常情况"""
try:
# 检查极端情况
land_cover = results["land_cover"]
# 检查森林覆盖异常低
if "森林" in land_cover and land_cover["森林"] < 5:
results["anomalies"].append("区域森林覆盖率异常低")
# 检查建筑区异常高
if "建筑区" in land_cover and land_cover["建筑区"] > 50:
results["anomalies"].append("区域建筑覆盖率异常高,可能存在过度城市化")
# 检查水体异常变化
if "水体" in land_cover:
if land_cover["水体"] < 1:
results["anomalies"].append("区域水体覆盖率极低")
elif land_cover["水体"] > 70:
results["anomalies"].append("区域水体覆盖率异常高,可能存在大规模洪水")
# 检查裸地和沙漠比例
bare_percentage = land_cover.get("裸地", 0) + land_cover.get("沙漠", 0)
if bare_percentage > 60:
results["anomalies"].append("区域裸地/沙漠覆盖率异常高,可能存在严重荒漠化")
except Exception as e:
print(f"检查异常情况错误: {e}")基于卫星图像和气候数据,我们设计了一个气候事件检测与分类系统:
class ClimateEventDetectionSystem:
def __init__(self, config=None):
self.config = config or {
"detection_threshold": 0.6,
"confidence_threshold": 0.7,
"min_event_duration": 3, # 最小事件持续天数
"max_event_gap": 2, # 允许的最大事件间隔天数
"time_window_size": 30 # 时间窗口大小(天)
}
# 初始化必要的模块
self.satellite_analyzer = None
self.temporal_analyzer = None
self._initialize_modules()
# 事件类型定义
self.event_types = {
"flood": {
"name": "洪水",
"description": "由暴雨、融雪或堤坝决口引起的水位异常上升",
"indicators": ["water_extent_increase", "precipitation_spike", "river_discharge_rise"]
},
"drought": {
"name": "干旱",
"description": "长期缺乏降水导致的水分短缺",
"indicators": ["ndvi_decrease", "temperature_rise", "precipitation_decrease", "soil_moisture_decline"]
},
"wildfire": {
"name": "野火",
"description": "自然或人为原因引起的大规模火灾",
"indicators": ["thermal_anomaly", "smoke_plume", "vegetation_loss", "temperature_spike"]
},
"hurricane": {
"name": "飓风/台风",
"description": "强烈的热带气旋,伴有强风和暴雨",
"indicators": ["wind_speed_increase", "pressure_drop", "storm_surge", "heavy_precipitation"]
},
"landslide": {
"name": "山体滑坡",
"description": "由重力引起的大量土壤和岩石下滑",
"indicators": ["slope_instability", "precipitation_trigger", "terrain_change", "vegetation_disturbance"]
},
"glacier_melt": {
"name": "冰川融化",
"description": "冰川质量因温度升高而减少",
"indicators": ["ice_extent_decrease", "temperature_rise", "albedo_change", "melt_water_increase"]
},
"sea_level_rise": {
"name": "海平面上升",
"description": "全球或区域海平面的长期上升趋势",
"indicators": ["coastal_erosion", "sea_water_level_increase", "saltwater_intrusion"]
},
"extreme_heat": {
"name": "极端高温",
"description": "异常高的温度持续一段时间",
"indicators": ["temperature_extreme", "heat_index_spike", "humidity_change"]
},
"extreme_cold": {
"name": "极端低温",
"description": "异常低的温度持续一段时间",
"indicators": ["temperature_extreme", "frost_formation", "precipitation_type_change"]
},
"tornado": {
"name": "龙卷风",
"description": "快速旋转的空气柱,接触地面和云层",
"indicators": ["wind_shear", "thunderstorm_formation", "funnel_cloud", "damage_pattern"]
}
}
print("气候事件检测系统初始化完成")
def _initialize_modules(self):
"""初始化分析模块"""
try:
# 初始化卫星图像分析器
self.satellite_analyzer = SatelliteImageAnalyzer()
# 初始化时间序列分析器
self.temporal_analyzer = TemporalAnalyzer()
print("分析模块初始化完成")
except Exception as e:
print(f"初始化分析模块错误: {e}")
def extract_indicators(self, satellite_data, time_series_data):
"""从多源数据中提取气候指标"""
indicators = {}
try:
# 从卫星数据中提取指标
if satellite_data is not None:
# 图像分析
if isinstance(satellite_data, str): # 假设是文件路径
image_description = self.satellite_analyzer.generate_climate_description(
satellite_data, time_series_data
)
indicators["satellite_analysis"] = image_description
# 提取水体覆盖变化
water_extent = self._estimate_water_extent(satellite_data)
indicators["water_extent"] = water_extent
# 提取植被健康状况
vegetation_health = self._assess_vegetation_health(satellite_data)
indicators["vegetation_health"] = vegetation_health
# 从时间序列数据中提取指标
if time_series_data is not None:
# 温度趋势
temp_trend = self.temporal_analyzer.analyze_trend(
time_series_data, "temperature"
)
indicators["temperature_trend"] = temp_trend
# 降水分析
precip_analysis = self.temporal_analyzer.analyze_precipitation(
time_series_data
)
indicators["precipitation"] = precip_analysis
# 检测异常
anomalies = self.temporal_analyzer.detect_anomalies(
time_series_data
)
indicators["anomalies"] = anomalies
return indicators
except Exception as e:
print(f"提取气候指标错误: {e}")
return indicators
def detect_events(self, indicators, location=None, timestamp=None):
"""基于指标检测气候事件"""
detected_events = []
try:
for event_type, event_info in self.event_types.items():
# 计算事件检测分数
detection_score = self._calculate_detection_score(
indicators, event_info["indicators"]
)
# 如果检测分数超过阈值,将事件添加到结果中
if detection_score >= self.config["detection_threshold"]:
# 生成详细的事件报告
event_details = self._generate_event_report(
event_type, event_info, indicators, detection_score
)
# 添加位置和时间信息(如果提供)
if location is not None:
event_details["location"] = location
if timestamp is not None:
event_details["timestamp"] = timestamp
detected_events.append(event_details)
# 根据置信度排序
detected_events.sort(key=lambda x: x["confidence"], reverse=True)
return detected_events
except Exception as e:
print(f"检测气候事件错误: {e}")
return detected_events
def _calculate_detection_score(self, indicators, required_indicators):
"""计算事件检测分数"""
import numpy as np
try:
# 简化的检测分数计算
# 实际应用中可能需要更复杂的算法和权重
score = 0.0
matched_indicators = 0
for req_ind in required_indicators:
# 检查指标是否存在并满足条件
# 这里使用简化的匹配逻辑,实际应用需要更详细的判断
if self._match_indicator(indicators, req_ind):
matched_indicators += 1
# 计算分数(匹配指标数/总指标数)
if required_indicators:
score = matched_indicators / len(required_indicators)
return score
except Exception as e:
print(f"计算检测分数错误: {e}")
return 0.0
def _match_indicator(self, indicators, required_indicator):
"""检查是否匹配所需指标"""
try:
# 简化的指标匹配逻辑
# 实际应用中需要更详细的匹配规则
if "water_extent" in required_indicator and "water_extent" in indicators:
# 检查水体覆盖是否显著增加
water_extent = indicators["water_extent"]
return water_extent.get("change", 0) > 0.1 # 如果增加超过10%
elif "temperature" in required_indicator and "temperature_trend" in indicators:
# 检查温度趋势
temp_trend = indicators["temperature_trend"]
if "rise" in required_indicator:
return temp_trend.get("direction", "") == "increasing"
elif "extreme" in required_indicator:
return temp_trend.get("is_extreme", False)
elif "precipitation" in required_indicator and "precipitation" in indicators:
# 检查降水情况
precip = indicators["precipitation"]
if "spike" in required_indicator or "heavy" in required_indicator:
return precip.get("is_heavy", False)
elif "decrease" in required_indicator:
return precip.get("trend", "") == "decreasing"
elif "vegetation" in required_indicator and "vegetation_health" in indicators:
# 检查植被健康
veg_health = indicators["vegetation_health"]
if "loss" in required_indicator or "decline" in required_indicator:
return veg_health.get("health_score", 1.0) < 0.5
# 检查是否有异常检测
if "anomaly" in required_indicator.lower() and "anomalies" in indicators:
anomalies = indicators["anomalies"]
return len(anomalies) > 0
# 默认不匹配
return False
except Exception as e:
print(f"匹配指标错误: {e}")
return False
def _generate_event_report(self, event_type, event_info, indicators, detection_score):
"""生成气候事件详细报告"""
try:
# 基础报告
report = {
"event_type": event_type,
"event_name": event_info["name"],
"description": event_info["description"],
"detection_score": detection_score,
"confidence": min(1.0, detection_score * 1.2), # 简单的置信度转换
"key_indicators": [],
"severity": "unknown",
"potential_impacts": [],
"recommended_actions": []
}
# 确定事件严重性(简化示例)
if detection_score > 0.85:
report["severity"] = "高"
elif detection_score > 0.7:
report["severity"] = "中"
else:
report["severity"] = "低"
# 识别关键指标
for indicator in event_info["indicators"]:
if self._match_indicator(indicators, indicator):
report["key_indicators"].append(indicator)
# 添加潜在影响
report["potential_impacts"] = self._estimate_impacts(event_type, report["severity"])
# 添加建议行动
report["recommended_actions"] = self._suggest_actions(
event_type, report["severity"]
)
return report
except Exception as e:
print(f"生成事件报告错误: {e}")
return {
"event_type": event_type,
"error": str(e)
}
def _estimate_impacts(self, event_type, severity):
"""估计气候事件的潜在影响"""
impacts = {
"flood": {
"high": ["基础设施严重损坏", "人员伤亡风险高", "大范围农作物损失", "传染病风险增加"],
"medium": ["局部地区淹没", "交通中断", "财产损失", "电力供应不稳定"],
"low": ["轻微积水", "排水系统压力增加"]
},
"drought": {
"high": ["严重水资源短缺", "农作物大幅减产", "牲畜死亡", "野火风险增加"],
"medium": ["水库水位下降", "灌溉限制", "地下水过度开采"],
"low": ["植被生长减缓", "轻微用水限制"]
},
"wildfire": {
"high": ["大面积植被破坏", "建筑物损失", "人员伤亡风险", "空气质量严重恶化"],
"medium": ["局部地区火灾", "烟雾影响", "野生动物栖息地破坏"],
"low": ["小型可控火灾", "有限的生态系统影响"]
},
"hurricane": {
"high": ["灾难性风力损害", "风暴潮淹没", "广泛停电", "大规模撤离"],
"medium": ["建筑物损坏", "洪水", "基础设施中断"],
"low": ["强风", "降雨", "小型洪水"]
}
}
# 默认影响
default_impacts = ["需要进一步监测", "可能影响当地生活"]
# 返回相应严重性的影响
if event_type in impacts and severity in impacts[event_type]:
return impacts[event_type][severity]
else:
return default_impacts
def _suggest_actions(self, event_type, severity):
"""建议应对气候事件的行动"""
actions = {
"flood": {
"high": ["立即启动应急响应", "疏散危险区域居民", "部署救援物资", "加强堤防监控"],
"medium": ["准备沙袋等防洪物资", "转移低洼地区贵重物品", "监控天气预报更新"],
"low": ["清理排水系统", "准备应急包", "关注当地预警"]
},
"drought": {
"high": ["实施严格水资源配给", "启动抗旱应急预案", "协助农民灌溉", "监测饮用水安全"],
"medium": ["推广节水措施", "调整农业种植计划", "增加水资源监测频率"],
"low": ["提高节水意识", "检查水管泄漏", "收集雨水"]
},
"wildfire": {
"high": ["疏散受威胁地区", "部署消防资源", "建立防火隔离带", "发布空气质量预警"],
"medium": ["限制户外活动", "避免明火", "准备个人防护设备"],
"low": ["保持警惕", "遵循当地防火规定", "清理周边易燃物"]
}
}
# 默认行动
default_actions = ["持续监测情况", "关注官方预警", "准备必要物资"]
# 返回相应严重性的行动建议
if event_type in actions and severity in actions[event_type]:
return actions[event_type][severity]
else:
return default_actions
def _estimate_water_extent(self, satellite_data):
"""估计水体覆盖范围"""
# 这是一个简化示例,实际应用需要更复杂的算法
try:
import numpy as np
# 模拟水体覆盖估计
# 实际应用中,应该从卫星图像分析中获取
if isinstance(satellite_data, dict) and "segmentation" in satellite_data:
# 假设0是水体类别
water_pixels = np.sum(satellite_data["segmentation"] == 0)
total_pixels = satellite_data["segmentation"].size
water_percentage = (water_pixels / total_pixels) * 100
return {
"percentage": water_percentage,
"change": 0.15 if water_percentage > 30 else 0.0, # 模拟变化
"status": "normal" if 10 <= water_percentage <= 50 else "anomalous"
}
else:
# 返回默认值
return {
"percentage": 25.0,
"change": 0.0,
"status": "normal"
}
except Exception as e:
print(f"估计水体覆盖错误: {e}")
return {"error": str(e)}
def _assess_vegetation_health(self, satellite_data):
"""评估植被健康状况"""
# 这是一个简化示例,实际应用需要基于NDVI等指标
try:
# 模拟植被健康评估
# 实际应用中,应该从卫星图像分析中获取NDVI或其他植被指数
return {
"health_score": 0.75, # 0-1之间的健康分数
"trend": "stable",
"anomalies": False
}
except Exception as e:
print(f"评估植被健康错误: {e}")
return {"error": str(e)}
class TemporalAnalyzer:
"""时间序列数据分析器"""
def __init__(self, config=None):
self.config = config or {
"anomaly_threshold": 3.0, # Z-score阈值
"trend_min_length": 10, # 趋势分析的最小数据点
"seasonality_period": 365, # 季节性周期(天)
"heavy_precip_threshold": 50 # 大雨阈值(mm)
}
def analyze_trend(self, time_series, variable_type="temperature"):
"""分析时间序列趋势"""
try:
import numpy as np
from scipy import stats
# 移除NaN值
valid_data = time_series[~np.isnan(time_series)]
if len(valid_data) < self.config["trend_min_length"]:
return {"error": "数据点不足"}
# 创建时间索引
x = np.arange(len(valid_data))
# 线性回归
slope, intercept, r_value, p_value, std_err = stats.linregress(x, valid_data)
# 计算趋势方向
direction = "increasing" if slope > 0 else "decreasing" if slope < 0 else "stable"
# 判断趋势显著性
is_significant = p_value < 0.05
# 判断是否为极端值
is_extreme = False
if variable_type == "temperature":
mean_val = np.mean(valid_data)
std_val = np.std(valid_data)
is_extreme = np.any(np.abs(valid_data - mean_val) > 3 * std_val)
return {
"slope": slope,
"direction": direction,
"r_squared": r_value**2,
"is_significant": is_significant,
"is_extreme": is_extreme,
"confidence": min(1.0, abs(r_value) * 1.2)
}
except Exception as e:
print(f"分析趋势错误: {e}")
return {"error": str(e)}
def analyze_precipitation(self, time_series):
"""分析降水数据"""
try:
import numpy as np
# 移除NaN值
valid_data = time_series[~np.isnan(time_series)]
if len(valid_data) == 0:
return {"error": "无有效数据"}
# 计算统计指标
total_precipitation = np.sum(valid_data)
mean_daily_precipitation = np.mean(valid_data)
max_daily_precipitation = np.max(valid_data)
# 判断是否有大雨
heavy_precipitation_events = np.sum(valid_data > self.config["heavy_precip_threshold"])
is_heavy = heavy_precipitation_events > 0
# 分析趋势
if len(valid_data) >= 10:
x = np.arange(len(valid_data))
from scipy import stats
slope, _, r_value, _, _ = stats.linregress(x, valid_data)
trend = "increasing" if slope > 0 else "decreasing" if slope < 0 else "stable"
else:
trend = "insufficient_data"
r_value = 0
return {
"total": total_precipitation,
"mean_daily": mean_daily_precipitation,
"max_daily": max_daily_precipitation,
"heavy_events": heavy_precipitation_events,
"is_heavy": is_heavy,
"trend": trend,
"trend_strength": abs(r_value)
}
except Exception as e:
print(f"分析降水错误: {e}")
return {"error": str(e)}
def detect_anomalies(self, time_series):
"""检测时间序列异常"""
try:
import numpy as np
from scipy import stats
# 移除NaN值
valid_data = time_series[~np.isnan(time_series)]
if len(valid_data) < 5:
return [{"warning": "数据点不足,无法检测异常"}]
anomalies = []
# Z-score异常检测
z_scores = np.abs(stats.zscore(valid_data))
anomaly_indices = np.where(z_scores > self.config["anomaly_threshold"])[0]
# 如果发现异常
if len(anomaly_indices) > 0:
for idx in anomaly_indices:
anomaly_value = valid_data[idx]
anomalies.append({
"type": "z_score_anomaly",
"index": int(idx),
"value": float(anomaly_value),
"z_score": float(z_scores[idx]),
"description": f"检测到异常值: {anomaly_value:.2f}"
})
# 趋势突变检测(简化)
if len(valid_data) >= 20:
mid_point = len(valid_data) // 2
first_half = valid_data[:mid_point]
second_half = valid_data[mid_point:]
# 计算前后半段的均值差异
mean_diff = np.abs(np.mean(first_half) - np.mean(second_half))
overall_std = np.std(valid_data)
# 如果差异超过2倍标准差,认为有突变
if mean_diff > 2 * overall_std:
anomalies.append({
"type": "trend_change",
"position": "middle",
"magnitude": float(mean_diff),
"description": "检测到趋势突变"
})
# 如果没有异常,返回正常信息
if not anomalies:
anomalies.append({"status": "normal", "description": "未检测到异常"})
return anomalies
except Exception as e:
print(f"检测异常错误: {e}")
return [{"error": str(e)}]让我们通过一个实际案例来展示如何使用上述系统进行极端天气事件的多模态分析:
class ClimateEventAnalysisExample:
def __init__(self):
print("初始化气候事件分析示例")
# 初始化必要的组件
self.fusion_system = LLMMultimodalFusion()
self.event_detection = ClimateEventDetectionSystem()
self.satellite_analyzer = SatelliteImageAnalyzer()
def prepare_sample_data(self):
"""准备示例数据"""
print("准备示例数据...")
# 生成模拟的卫星图像路径(实际应用中应使用真实图像)
satellite_image_path = "sample_satellite_image.jpg" # 模拟路径
# 生成模拟的时间序列数据
import numpy as np
np.random.seed(42) # 确保结果可复现
# 生成正常温度序列,但添加一个热浪事件
days = 365
base_temp = 25 # 基础温度
seasonal_variation = 10 * np.sin(np.linspace(0, 2*np.pi, days)) # 季节性变化
random_noise = 2 * np.random.randn(days) # 随机噪声
# 创建热浪事件
heat_wave_start = 150
heat_wave_duration = 10
heat_wave_amplitude = 15
heat_wave = np.zeros(days)
heat_wave[heat_wave_start:heat_wave_start+heat_wave_duration] = heat_wave_amplitude
# 合成温度数据
temperature_data = base_temp + seasonal_variation + random_noise + heat_wave
# 生成降水数据(与热浪期间干燥相对应)
base_precip = 5
precip_noise = 10 * np.random.rand(days)
# 热浪期间降水减少
heat_wave_dry = np.ones(days)
heat_wave_dry[heat_wave_start:heat_wave_start+heat_wave_duration] = 0.1
precipitation_data = base_precip * heat_wave_dry + precip_noise
precipitation_data = np.maximum(0, precipitation_data) # 确保非负
# 创建时间序列数据集
time_series_data = {
"temperature": temperature_data,
"precipitation": precipitation_data,
"timestamps": np.arange(days) # 天数索引
}
# 创建文本描述
text_description = "2025年夏季,某地区经历了一次严重的热浪事件,持续约10天,期间温度异常升高,降水稀少,多地出现高温预警。卫星图像显示该地区植被受到明显影响。"
return {
"satellite_image": satellite_image_path,
"time_series": time_series_data,
"text_description": text_description
}
def run_analysis_pipeline(self, sample_data):
"""运行完整的分析流程"""
print("开始运行分析流程...")
# 步骤1:提取多模态特征
print("\n步骤1:提取多模态特征")
# 由于没有真实图像,我们模拟图像分析结果
satellite_analysis = {
"image_description": "卫星图像显示该地区大部分为绿色植被,但在热浪区域出现明显的植被胁迫迹象,部分区域呈现黄色调。城市区域温度较高,水体面积正常。",
"land_cover": {
"植被": 65.2,
"建筑区": 18.7,
"水体": 10.5,
"裸地": 5.6
},
"thermal_anomalies": [
{"location": "城市中心", "temperature": 42.5, "severity": "高"},
{"location": "工业区", "temperature": 40.2, "severity": "高"}
],
"vegetation_stress": True,
"stress_severity": "中度"
}
# 步骤2:分析时间序列数据
print("\n步骤2:分析时间序列数据")
# 分析温度数据
temp_analysis = self.event_detection.temporal_analyzer.analyze_trend(
sample_data["time_series"]["temperature"], "temperature"
)
# 分析降水数据
precip_analysis = self.event_detection.temporal_analyzer.analyze_precipitation(
sample_data["time_series"]["precipitation"]
)
# 检测温度异常
temp_anomalies = self.event_detection.temporal_analyzer.detect_anomalies(
sample_data["time_series"]["temperature"]
)
# 步骤3:提取气候指标
print("\n步骤3:提取气候指标")
# 模拟提取指标
indicators = {
"satellite_analysis": satellite_analysis["image_description"],
"thermal_anomalies": satellite_analysis["thermal_anomalies"],
"vegetation_stress": satellite_analysis["vegetation_stress"],
"temperature_trend": temp_analysis,
"precipitation": precip_analysis,
"anomalies": temp_anomalies
}
# 步骤4:检测气候事件
print("\n步骤4:检测气候事件")
detected_events = self.event_detection.detect_events(
indicators,
location="模拟地区",
timestamp="2025-07-15"
)
# 步骤5:多模态融合分析
print("\n步骤5:多模态融合分析")
# 准备LLM融合的提示
task_description = f"分析以下多模态数据,识别气候事件并提供详细分析:\n"
task_description += f"1. 卫星图像分析:{satellite_analysis['image_description']}\n"
task_description += f"2. 地表覆盖:{satellite_analysis['land_cover']}\n"
task_description += f"3. 温度趋势:{temp_analysis}\n"
task_description += f"4. 降水分析:{precip_analysis}\n"
task_description += f"5. 检测到的异常:{temp_anomalies}\n"
task_description += f"6. 检测到的气候事件:{[e['event_name'] for e in detected_events]}\n"
task_description += f"7. 文本描述:{sample_data['text_description']}\n"
task_description += "请提供综合分析,包括事件成因、影响评估和建议措施。"
# 运行融合分析(由于没有真实LLM,我们模拟结果)
fusion_result = self._simulate_fusion_analysis(task_description, detected_events)
# 步骤6:生成最终报告
print("\n步骤6:生成最终报告")
final_report = self._generate_final_report(
detected_events, fusion_result, indicators
)
return final_report
def _simulate_fusion_analysis(self, task_description, detected_events):
"""模拟融合分析结果"""
# 这是一个模拟,实际应用中应使用真实的LLM
# 提取主要事件
primary_event = detected_events[0] if detected_events else None
# 模拟分析结果
analysis = {
"summary": "基于多模态数据分析,我们识别到一次典型的极端高温事件(热浪)。",
"findings": [
"卫星图像显示该地区植被出现中度胁迫迹象,城市热岛效应明显。",
"温度数据显示连续10天的异常高温,最高温度超过42°C。",
"降水数据表明热浪期间降水量显著减少,加剧了干旱条件。",
"时间序列分析检测到明显的温度异常和趋势变化。"
],
"causes": [
"大气环流异常导致的持续高压系统",
"全球气候变化背景下的极端天气事件频率增加",
"城市热岛效应加剧了城市区域的高温"
],
"impacts": [
"对人类健康的威胁,特别是老年人和慢性病患者",
"农作物产量可能受到影响,尤其是对高温敏感的作物",
"能源需求增加,可能导致电力供应紧张",
"水资源短缺加剧,特别是农业灌溉需求增加"
],
"recommendations": [
"启动高温应急预案,设立避暑中心",
"建议居民减少户外活动,特别是在午后高温时段",
"加强电网监测,确保电力供应稳定",
"实施节水措施,合理分配水资源",
"加强对农作物的灌溉和保护措施"
]
}
# 如果有检测到的事件,更新分析
if primary_event:
analysis["detected_event"] = primary_event["event_name"]
analysis["confidence"] = primary_event["confidence"]
analysis["severity"] = primary_event["severity"]
return analysis
def _generate_final_report(self, detected_events, fusion_analysis, indicators):
"""生成最终分析报告"""
report = {
"title": "极端气候事件多模态分析报告",
"date": "2025-07-20",
"location": "模拟地区",
"executive_summary": fusion_analysis["summary"],
"detected_events": detected_events,
"key_findings": fusion_analysis["findings"],
"probable_causes": fusion_analysis["causes"],
"potential_impacts": fusion_analysis["impacts"],
"recommendations": fusion_analysis["recommendations"],
"data_sources": [
"卫星遥感图像",
"地面气象站温度数据",
"降水监测数据",
"文本报告"
],
"confidence_assessment": {
"overall_confidence": "高",
"event_detection": detected_events[0]["confidence"] if detected_events else "未知",
"data_quality": "良好",
"limitations": [
"模拟数据用于演示",
"缺乏历史数据进行比较",
"没有真实的卫星图像分析"
]
}
}
# 格式化报告为可读文本
formatted_report = self._format_report(report)
return {
"structured": report,
"formatted_text": formatted_report
}
def _format_report(self, report):
"""格式化报告为可读文本"""
lines = []
# 标题
lines.append("=" * 80)
lines.append(report["title"].center(80))
lines.append("=" * 80)
# 基本信息
lines.append(f"报告日期: {report['date']}")
lines.append(f"分析地点: {report['location']}")
lines.append("")
# 执行摘要
lines.append("## 执行摘要")
lines.append(report["executive_summary"])
lines.append("")
# 检测到的事件
lines.append("## 检测到的气候事件")
for event in report["detected_events"]:
lines.append(f"- {event['event_name']} (严重性: {event['severity']}, 置信度: {event['confidence']:.2f})")
lines.append("")
# 关键发现
lines.append("## 关键发现")
for finding in report["key_findings"]:
lines.append(f"- {finding}")
lines.append("")
# 可能原因
lines.append("## 可能原因")
for cause in report["probable_causes"]:
lines.append(f"- {cause}")
lines.append("")
# 潜在影响
lines.append("## 潜在影响")
for impact in report["potential_impacts"]:
lines.append(f"- {impact}")
lines.append("")
# 建议措施
lines.append("## 建议措施")
for rec in report["recommendations"]:
lines.append(f"- {rec}")
lines.append("")
# 置信度评估
lines.append("## 置信度评估")
lines.append(f"- 总体置信度: {report['confidence_assessment']['overall_confidence']}")
lines.append(f"- 事件检测置信度: {report['confidence_assessment']['event_detection']}")
lines.append(f"- 数据质量: {report['confidence_assessment']['data_quality']}")
lines.append("")
# 局限性
lines.append("## 分析局限性")
for limitation in report["confidence_assessment"]["limitations"]:
lines.append(f"- {limitation}")
lines.append("")
# 数据来源
lines.append("## 数据来源")
for source in report["data_sources"]:
lines.append(f"- {source}")
lines.append("")
lines.append("=" * 80)
return "\n".join(lines)
def demonstrate_analysis(self):
"""演示完整分析过程"""
print("开始气候事件多模态分析演示...")
# 准备数据
sample_data = self.prepare_sample_data()
# 运行分析
final_report = self.run_analysis_pipeline(sample_data)
# 打印报告
print("\n===== 最终分析报告 =====\n")
print(final_report["formatted_text"])
print("\n分析演示完成。")
return final_report
# 运行分析示例
if __name__ == "__main__":
# 由于是模拟环境,我们可能没有真实的卫星图像和完整的LLM环境
# 因此,这个示例主要展示了整个分析流程的框架和逻辑
print("气候事件多模态分析示例")
print("注意:在实际环境中运行需要真实的卫星图像和适当的计算资源")
# 我们不实际执行分析,只是展示代码框架
print("\n代码框架已展示,包含以下主要组件:")
print("1. LLMMultimodalFusion - 多模态融合框架")
print("2. CrossModalAttention - 跨模态注意力机制")
print("3. SpatioTemporalModel - 时空关联建模")
print("4. SatelliteImageAnalyzer - 卫星图像分析器")
print("5. ClimateEventDetectionSystem - 气候事件检测系统")
print("6. ClimateEventAnalysisExample - 完整分析流程示例")