首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >第七章:CPU与GPU计算引擎实现

第七章:CPU与GPU计算引擎实现

作者头像
javpower
发布2025-08-06 17:32:13
发布2025-08-06 17:32:13
1630
举报

第七章:CPU与GPU计算引擎实现

7.1 计算引擎架构设计

7.1.1 设计目标

计算引擎是向量搜索系统的性能核心,负责:

  • 距离计算:高效计算向量间距离
  • 批量处理:支持批量向量运算
  • 硬件优化:充分利用CPU和GPU资源
  • 可扩展性:支持不同计算后端

7.1.2 架构概览

7.1.3 接口设计

代码语言:javascript
复制
package com.jvector.compute;

import com.jvector.core.DistanceMetric;

/**
 * 计算引擎接口
 */
public interface ComputeEngine {
    /**
     * 计算单对向量距离
     */
    float distance(float[] a, float[] b, DistanceMetric metric);

    /**
     * 批量计算距离
     */
    float[] batchDistance(float[] query, float[][] vectors, DistanceMetric metric);

    /**
     * 矩阵向量乘法
     */
    float[] matrixVectorMultiply(float[][] matrix, float[] vector);

    /**
     * 向量点积
     */
    float dotProduct(float[] a, float[] b);

    /**
     * 获取引擎名称
     */
    String getName();

    /**
     * 检查是否可用
     */
    boolean isAvailable();

    /**
     * 预热引擎
     */
    void warmup();

    /**
     * 清理资源
     */
    void cleanup();
}

7.2 CPU计算引擎实现

7.2.1 基础实现

代码语言:javascript
复制
package com.jvector.compute;

import com.jvector.core.DistanceMetric;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;

/**
 * CPU计算引擎实现
 */
public class CpuComputeEngine implements ComputeEngine {
    private static final Logger logger = LoggerFactory.getLogger(CpuComputeEngine.class);

    private final ForkJoinPool forkJoinPool;
    private final int parallelThreshold;

    public CpuComputeEngine() {
        this(Runtime.getRuntime().availableProcessors(), 1000);
    }

    public CpuComputeEngine(int parallelism, int parallelThreshold) {
        this.forkJoinPool = new ForkJoinPool(parallelism);
        this.parallelThreshold = parallelThreshold;
    }

    @Override
    public float distance(float[] a, float[] b, DistanceMetric metric) {
        return metric.distance(a, b);
    }

    @Override
    public float[] batchDistance(float[] query, float[][] vectors, DistanceMetric metric) {
        if (vectors.length < parallelThreshold) {
            return sequentialBatchDistance(query, vectors, metric);
        } else {
            return parallelBatchDistance(query, vectors, metric);
        }
    }

    /**
     * 顺序批量计算
     */
    private float[] sequentialBatchDistance(float[] query, float[][] vectors, DistanceMetric metric) {
        float[] distances = new float[vectors.length];
        for (int i = 0; i < vectors.length; i++) {
            distances[i] = metric.distance(query, vectors[i]);
        }
        return distances;
    }

    /**
     * 并行批量计算
     */
    private float[] parallelBatchDistance(float[] query, float[][] vectors, DistanceMetric metric) {
        BatchDistanceTask task = new BatchDistanceTask(query, vectors, metric, 0, vectors.length);
        return forkJoinPool.invoke(task);
    }

    @Override
    public String getName() {
        return "CPU";
    }

    @Override
    public boolean isAvailable() {
        return true; // CPU总是可用的
    }

    @Override
    public void warmup() {
        logger.info("Warming up CPU compute engine...");

        // 预热:执行一些计算操作来优化JIT编译
        float[] warmupVector1 = new float[128];
        float[] warmupVector2 = new float[128];

        for (int i = 0; i < warmupVector1.length; i++) {
            warmupVector1[i] = (float) Math.random();
            warmupVector2[i] = (float) Math.random();
        }

        // 执行多次计算预热
        for (int i = 0; i < 1000; i++) {
            dotProduct(warmupVector1, warmupVector2);
        }

        logger.info("CPU compute engine warmed up");
    }

    @Override
    public void cleanup() {
        if (forkJoinPool != null && !forkJoinPool.isShutdown()) {
            forkJoinPool.shutdown();
        }
    }
}

7.2.2 SIMD优化实现

代码语言:javascript
复制
/**
 * SIMD优化的向量运算
 */
public class SIMDOptimizedOperations {

    /**
     * SIMD优化的点积计算
     */
    public static float dotProductSIMD(float[] a, float[] b) {
        if (a.length != b.length) {
            throw new IllegalArgumentException("Vector dimensions must match");
        }

        int len = a.length;
        float sum = 0.0f;
        int i = 0;

        // 向量化循环:一次处理8个元素
        for (; i < len - 7; i += 8) {
            // 手动循环展开模拟SIMD操作
            sum += a[i] * b[i] + a[i+1] * b[i+1] + 
                   a[i+2] * b[i+2] + a[i+3] * b[i+3] +
                   a[i+4] * b[i+4] + a[i+5] * b[i+5] +
                   a[i+6] * b[i+6] + a[i+7] * b[i+7];
        }

        // 处理剩余元素
        for (; i < len; i++) {
            sum += a[i] * b[i];
        }

        return sum;
    }

    /**
     * SIMD优化的欧几里得距离平方
     */
    public static float euclideanDistanceSquaredSIMD(float[] a, float[] b) {
        if (a.length != b.length) {
            throw new IllegalArgumentException("Vector dimensions must match");
        }

        int len = a.length;
        float sum = 0.0f;
        int i = 0;

        // 向量化循环:一次处理4个元素
        for (; i < len - 3; i += 4) {
            float diff0 = a[i] - b[i];
            float diff1 = a[i+1] - b[i+1];
            float diff2 = a[i+2] - b[i+2];
            float diff3 = a[i+3] - b[i+3];

            sum += diff0 * diff0 + diff1 * diff1 + 
                   diff2 * diff2 + diff3 * diff3;
        }

        // 处理剩余元素
        for (; i < len; i++) {
            float diff = a[i] - b[i];
            sum += diff * diff;
        }

        return sum;
    }

    /**
     * 向量加法SIMD优化
     */
    public static void vectorAddSIMD(float[] a, float[] b, float[] result) {
        int len = a.length;
        int i = 0;

        // 向量化处理
        for (; i < len - 3; i += 4) {
            result[i] = a[i] + b[i];
            result[i+1] = a[i+1] + b[i+1];
            result[i+2] = a[i+2] + b[i+2];
            result[i+3] = a[i+3] + b[i+3];
        }

        // 处理剩余元素
        for (; i < len; i++) {
            result[i] = a[i] + b[i];
        }
    }
}

7.2.3 Fork/Join并行计算

代码语言:javascript
复制
/**
 * Fork/Join并行距离计算任务
 */
private class BatchDistanceTask extends RecursiveTask<float[]> {
    private final float[] query;
    private final float[][] vectors;
    private final DistanceMetric metric;
    private final int start;
    private final int end;

    private static final int THRESHOLD = 100; // 分割阈值

    public BatchDistanceTask(float[] query, float[][] vectors, DistanceMetric metric,
                           int start, int end) {
        this.query = query;
        this.vectors = vectors;
        this.metric = metric;
        this.start = start;
        this.end = end;
    }

    @Override
    protected float[] compute() {
        int length = end - start;

        if (length <= THRESHOLD) {
            // 直接计算
            return computeDirectly();
        } else {
            // 分割任务
            int mid = start + length / 2;

            BatchDistanceTask leftTask = new BatchDistanceTask(query, vectors, metric, start, mid);
            BatchDistanceTask rightTask = new BatchDistanceTask(query, vectors, metric, mid, end);

            // 异步执行左侧任务
            leftTask.fork();

            // 同步执行右侧任务
            float[] rightResult = rightTask.compute();

            // 等待左侧任务完成
            float[] leftResult = leftTask.join();

            // 合并结果
            return mergeResults(leftResult, rightResult);
        }
    }

    /**
     * 直接计算距离
     */
    private float[] computeDirectly() {
        float[] distances = new float[end - start];
        for (int i = start; i < end; i++) {
            distances[i - start] = metric.distance(query, vectors[i]);
        }
        return distances;
    }

    /**
     * 合并计算结果
     */
    private float[] mergeResults(float[] left, float[] right) {
        float[] result = new float[left.length + right.length];
        System.arraycopy(left, 0, result, 0, left.length);
        System.arraycopy(right, 0, result, left.length, right.length);
        return result;
    }
}

7.3 GPU计算引擎实现

7.3.1 JCuda环境配置

代码语言:javascript
复制
package com.jvector.compute;

import jcuda.*;
import jcuda.driver.*;
import jcuda.runtime.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * GPU计算引擎实现
 */
public class GpuComputeEngine implements ComputeEngine {
    private static final Logger logger = LoggerFactory.getLogger(GpuComputeEngine.class);

    private boolean isInitialized = false;
    private boolean isAvailable = false;
    private CUcontext context;
    private CUmodule module;
    private CUfunction distanceKernel;

    public GpuComputeEngine() {
        initializeGpu();
    }

    /**
     * 初始化GPU环境
     */
    private void initializeGpu() {
        try {
            // 初始化JCuda驱动API
            JCudaDriver.setExceptionsEnabled(true);
            JCudaDriver.cuInit(0);

            // 获取GPU设备
            CUdevice device = new CUdevice();
            JCudaDriver.cuDeviceGet(device, 0);

            // 创建GPU上下文
            context = new CUcontext();
            JCudaDriver.cuCtxCreate(context, 0, device);

            // 加载CUDA模块
            loadCudaModule();

            isInitialized = true;
            isAvailable = true;

            logger.info("GPU compute engine initialized successfully");

        } catch (Exception e) {
            logger.warn("Failed to initialize GPU compute engine: {}", e.getMessage());
            isAvailable = false;
        }
    }

    /**
     * 加载CUDA模块和核函数
     */
    private void loadCudaModule() {
        // CUDA源代码
        String cudaSource = 
            "extern "C" __global__ void computeDistances(" +
            "    float* query," +
            "    float* vectors," +
            "    float* distances," +
            "    int vectorCount," +
            "    int dimension)" +
            "{" +
            "    int idx = blockIdx.x * blockDim.x + threadIdx.x;" +
            "    if (idx < vectorCount) {" +
            "        float sum = 0.0f;" +
            "        for (int i = 0; i < dimension; i++) {" +
            "            float diff = query[i] - vectors[idx * dimension + i];" +
            "            sum += diff * diff;" +
            "        }" +
            "        distances[idx] = sqrtf(sum);" +
            "    }" +
            "}";

        // 编译CUDA代码
        try {
            // 这里应该使用NVRTC编译CUDA代码
            // 为简化示例,假设已经有编译好的PTX文件
            module = new CUmodule();
            JCudaDriver.cuModuleLoadData(module, cudaSource.getBytes());

            // 获取核函数
            distanceKernel = new CUfunction();
            JCudaDriver.cuModuleGetFunction(distanceKernel, module, "computeDistances");

        } catch (Exception e) {
            throw new RuntimeException("Failed to load CUDA module", e);
        }
    }

    @Override
    public float[] batchDistance(float[] query, float[][] vectors, DistanceMetric metric) {
        if (!isAvailable) {
            throw new IllegalStateException("GPU compute engine is not available");
        }

        return computeDistancesOnGpu(query, vectors);
    }

    /**
     * 在GPU上计算距离
     */
    private float[] computeDistancesOnGpu(float[] query, float[][] vectors) {
        int vectorCount = vectors.length;
        int dimension = query.length;

        // 分配GPU内存
        CUdeviceptr d_query = new CUdeviceptr();
        CUdeviceptr d_vectors = new CUdeviceptr();
        CUdeviceptr d_distances = new CUdeviceptr();

        try {
            // 分配内存
            JCudaDriver.cuMemAlloc(d_query, query.length * Sizeof.FLOAT);
            JCudaDriver.cuMemAlloc(d_vectors, vectorCount * dimension * Sizeof.FLOAT);
            JCudaDriver.cuMemAlloc(d_distances, vectorCount * Sizeof.FLOAT);

            // 拷贝数据到GPU
            JCudaDriver.cuMemcpyHtoD(d_query, Pointer.to(query), query.length * Sizeof.FLOAT);

            // 展平向量数组
            float[] flatVectors = flattenVectors(vectors);
            JCudaDriver.cuMemcpyHtoD(d_vectors, Pointer.to(flatVectors), flatVectors.length * Sizeof.FLOAT);

            // 设置核函数参数
            Pointer kernelParameters = Pointer.to(
                Pointer.to(d_query),
                Pointer.to(d_vectors),
                Pointer.to(d_distances),
                Pointer.to(new int[]{vectorCount}),
                Pointer.to(new int[]{dimension})
            );

            // 计算网格和块大小
            int blockSize = 256;
            int gridSize = (vectorCount + blockSize - 1) / blockSize;

            // 启动核函数
            JCudaDriver.cuLaunchKernel(
                distanceKernel,
                gridSize, 1, 1,          // 网格大小
                blockSize, 1, 1,         // 块大小
                0, null,                 // 共享内存和流
                kernelParameters, null   // 参数
            );

            // 等待计算完成
            JCudaDriver.cuCtxSynchronize();

            // 拷贝结果回CPU
            float[] distances = new float[vectorCount];
            JCudaDriver.cuMemcpyDtoH(Pointer.to(distances), d_distances, vectorCount * Sizeof.FLOAT);

            return distances;

        } finally {
            // 释放GPU内存
            JCudaDriver.cuMemFree(d_query);
            JCudaDriver.cuMemFree(d_vectors);
            JCudaDriver.cuMemFree(d_distances);
        }
    }

    /**
     * 展平二维向量数组
     */
    private float[] flattenVectors(float[][] vectors) {
        int totalSize = vectors.length * vectors[0].length;
        float[] flat = new float[totalSize];

        int index = 0;
        for (float[] vector : vectors) {
            System.arraycopy(vector, 0, flat, index, vector.length);
            index += vector.length;
        }

        return flat;
    }

    @Override
    public String getName() {
        return "GPU";
    }

    @Override
    public boolean isAvailable() {
        return isAvailable;
    }

    @Override
    public void cleanup() {
        if (isInitialized) {
            try {
                if (module != null) {
                    JCudaDriver.cuModuleUnload(module);
                }
                if (context != null) {
                    JCudaDriver.cuCtxDestroy(context);
                }
            } catch (Exception e) {
                logger.warn("Error during GPU cleanup: {}", e.getMessage());
            }
        }
    }
}

7.3.2 GPU内存管理

代码语言:javascript
复制
/**
 * GPU内存管理器
 */
public class GpuMemoryManager {
    private static final Logger logger = LoggerFactory.getLogger(GpuMemoryManager.class);

    private final Map<String, CUdeviceptr> memoryPool = new ConcurrentHashMap<>();
    private final AtomicLong totalAllocated = new AtomicLong(0);
    private final long maxMemory;

    public GpuMemoryManager() {
        this.maxMemory = getGpuMemoryInfo();
    }

    /**
     * 分配GPU内存
     */
    public CUdeviceptr allocate(String key, long size) {
        if (totalAllocated.get() + size > maxMemory * 0.8) { // 保留20%空间
            freeUnusedMemory();
        }

        CUdeviceptr ptr = new CUdeviceptr();
        JCudaDriver.cuMemAlloc(ptr, size);

        memoryPool.put(key, ptr);
        totalAllocated.addAndGet(size);

        logger.debug("Allocated {} bytes GPU memory for key: {}", size, key);
        return ptr;
    }

    /**
     * 释放GPU内存
     */
    public void free(String key, long size) {
        CUdeviceptr ptr = memoryPool.remove(key);
        if (ptr != null) {
            JCudaDriver.cuMemFree(ptr);
            totalAllocated.addAndGet(-size);
            logger.debug("Freed {} bytes GPU memory for key: {}", size, key);
        }
    }

    /**
     * 获取GPU内存信息
     */
    private long getGpuMemoryInfo() {
        long[] free = new long[1];
        long[] total = new long[1];
        JCudaDriver.cuMemGetInfo(free, total);
        return total[0];
    }

    /**
     * 释放未使用的内存
     */
    private void freeUnusedMemory() {
        // 实现LRU或其他策略释放内存
    }
}

7.4 计算引擎选择策略

7.4.1 自适应引擎选择

代码语言:javascript
复制
/**
 * 自适应计算引擎选择器
 */
public class AdaptiveComputeEngine implements ComputeEngine {
    private final ComputeEngine cpuEngine;
    private final ComputeEngine gpuEngine;
    private final PerformanceProfiler profiler;

    // 性能阈值
    private static final int GPU_THRESHOLD_VECTOR_COUNT = 1000;
    private static final int GPU_THRESHOLD_DIMENSION = 128;

    public AdaptiveComputeEngine() {
        this.cpuEngine = new CpuComputeEngine();
        this.gpuEngine = new GpuComputeEngine();
        this.profiler = new PerformanceProfiler();
    }

    @Override
    public float[] batchDistance(float[] query, float[][] vectors, DistanceMetric metric) {
        // 选择最优计算引擎
        ComputeEngine selectedEngine = selectEngine(query.length, vectors.length);

        long startTime = System.nanoTime();
        float[] result = selectedEngine.batchDistance(query, vectors, metric);
        long duration = System.nanoTime() - startTime;

        // 记录性能数据
        profiler.recordPerformance(selectedEngine.getName(), vectors.length, query.length, duration);

        return result;
    }

    /**
     * 选择计算引擎
     */
    private ComputeEngine selectEngine(int dimension, int vectorCount) {
        // 如果GPU不可用,使用CPU
        if (!gpuEngine.isAvailable()) {
            return cpuEngine;
        }

        // 基于历史性能数据选择
        if (profiler.hasEnoughData()) {
            return profiler.recommendEngine(dimension, vectorCount);
        }

        // 基于经验规则选择
        if (vectorCount >= GPU_THRESHOLD_VECTOR_COUNT && dimension >= GPU_THRESHOLD_DIMENSION) {
            return gpuEngine;
        } else {
            return cpuEngine;
        }
    }

    @Override
    public String getName() {
        return "Adaptive";
    }

    @Override
    public boolean isAvailable() {
        return cpuEngine.isAvailable(); // CPU总是可用
    }
}

7.4.2 性能分析器

代码语言:javascript
复制
/**
 * 计算引擎性能分析器
 */
public class PerformanceProfiler {
    private final Map<String, List<PerformanceRecord>> records = new ConcurrentHashMap<>();
    private final int maxRecords = 1000;

    public void recordPerformance(String engineName, int vectorCount, int dimension, long duration) {
        PerformanceRecord record = new PerformanceRecord(vectorCount, dimension, duration, System.currentTimeMillis());

        records.computeIfAbsent(engineName, k -> new ArrayList<>()).add(record);

        // 限制记录数量
        List<PerformanceRecord> engineRecords = records.get(engineName);
        if (engineRecords.size() > maxRecords) {
            engineRecords.remove(0); // 移除最老的记录
        }
    }

    public ComputeEngine recommendEngine(int dimension, int vectorCount) {
        double cpuScore = calculatePerformanceScore("CPU", dimension, vectorCount);
        double gpuScore = calculatePerformanceScore("GPU", dimension, vectorCount);

        return cpuScore < gpuScore ? cpuEngine : gpuEngine;
    }

    private double calculatePerformanceScore(String engineName, int dimension, int vectorCount) {
        List<PerformanceRecord> engineRecords = records.get(engineName);
        if (engineRecords == null || engineRecords.isEmpty()) {
            return Double.MAX_VALUE;
        }

        // 找到相似的历史记录
        return engineRecords.stream()
            .filter(r -> Math.abs(r.dimension - dimension) <= dimension * 0.1 && 
                        Math.abs(r.vectorCount - vectorCount) <= vectorCount * 0.1)
            .mapToLong(r -> r.duration)
            .average()
            .orElse(Double.MAX_VALUE);
    }

    public boolean hasEnoughData() {
        return records.values().stream().mapToInt(List::size).sum() >= 100;
    }

    private static class PerformanceRecord {
        final int vectorCount;
        final int dimension;
        final long duration;
        final long timestamp;

        PerformanceRecord(int vectorCount, int dimension, long duration, long timestamp) {
            this.vectorCount = vectorCount;
            this.dimension = dimension;
            this.duration = duration;
            this.timestamp = timestamp;
        }
    }
}

7.5 性能基准测试

7.5.1 基准测试框架

代码语言:javascript
复制
/**
 * 计算引擎基准测试
 */
public class ComputeEngineBenchmark {
    private static final Logger logger = LoggerFactory.getLogger(ComputeEngineBenchmark.class);

    @Test
    public void benchmarkComputeEngines() {
        int[] dimensions = {64, 128, 256, 512, 1024};
        int[] vectorCounts = {100, 1000, 10000, 100000};

        ComputeEngine cpuEngine = new CpuComputeEngine();
        ComputeEngine gpuEngine = new GpuComputeEngine();

        // 预热
        warmupEngines(cpuEngine, gpuEngine);

        for (int dim : dimensions) {
            for (int count : vectorCounts) {
                benchmarkConfiguration(cpuEngine, gpuEngine, dim, count);
            }
        }
    }

    private void benchmarkConfiguration(ComputeEngine cpuEngine, ComputeEngine gpuEngine, 
                                      int dimension, int vectorCount) {

        // 生成测试数据
        float[] query = generateRandomVector(dimension);
        float[][] vectors = generateRandomVectors(vectorCount, dimension);
        DistanceMetric metric = new EuclideanDistance();

        // 测试CPU引擎
        long cpuTime = benchmarkEngine(cpuEngine, query, vectors, metric, "CPU");

        // 测试GPU引擎
        long gpuTime = 0;
        if (gpuEngine.isAvailable()) {
            gpuTime = benchmarkEngine(gpuEngine, query, vectors, metric, "GPU");
        }

        // 输出结果
        logger.info("Dimension: {}, Vectors: {}, CPU: {}ms, GPU: {}ms, Speedup: {}x",
                   dimension, vectorCount, cpuTime / 1_000_000, gpuTime / 1_000_000,
                   gpuTime > 0 ? (double) cpuTime / gpuTime : "N/A");
    }

    private long benchmarkEngine(ComputeEngine engine, float[] query, float[][] vectors,
                               DistanceMetric metric, String name) {
        int warmupRuns = 5;
        int benchmarkRuns = 10;

        // 预热运行
        for (int i = 0; i < warmupRuns; i++) {
            engine.batchDistance(query, vectors, metric);
        }

        // 基准测试
        long totalTime = 0;
        for (int i = 0; i < benchmarkRuns; i++) {
            long startTime = System.nanoTime();
            engine.batchDistance(query, vectors, metric);
            totalTime += System.nanoTime() - startTime;
        }

        return totalTime / benchmarkRuns;
    }

    private void warmupEngines(ComputeEngine... engines) {
        float[] warmupQuery = generateRandomVector(128);
        float[][] warmupVectors = generateRandomVectors(1000, 128);
        DistanceMetric metric = new EuclideanDistance();

        for (ComputeEngine engine : engines) {
            if (engine.isAvailable()) {
                engine.warmup();
                for (int i = 0; i < 10; i++) {
                    engine.batchDistance(warmupQuery, warmupVectors, metric);
                }
            }
        }
    }
}

小结

本章详细介绍了CPU和GPU计算引擎的设计与实现:

  1. 架构设计
    • 统一的计算引擎接口
    • 可插拔的计算后端
    • 自适应引擎选择
  2. CPU优化
    • SIMD指令集优化
    • Fork/Join并行计算
    • 多线程性能调优
  3. GPU加速
    • JCuda环境配置
    • CUDA核函数编写
    • GPU内存管理
  4. 性能优化
    • 自适应引擎选择
    • 性能分析与监控
    • 基准测试框架

计算引擎是向量搜索系统性能的关键,通过CPU和GPU的协同工作,可以显著提升系统的计算效率。


思考题:

  1. 在什么情况下GPU计算比CPU更有优势?
  2. 如何设计一个高效的GPU内存管理策略?
  3. 如何实现计算引擎的负载均衡?
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder建设 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 第七章:CPU与GPU计算引擎实现
    • 7.1 计算引擎架构设计
      • 7.1.1 设计目标
      • 7.1.2 架构概览
      • 7.1.3 接口设计
    • 7.2 CPU计算引擎实现
      • 7.2.1 基础实现
      • 7.2.2 SIMD优化实现
      • 7.2.3 Fork/Join并行计算
    • 7.3 GPU计算引擎实现
      • 7.3.1 JCuda环境配置
      • 7.3.2 GPU内存管理
    • 7.4 计算引擎选择策略
      • 7.4.1 自适应引擎选择
      • 7.4.2 性能分析器
    • 7.5 性能基准测试
      • 7.5.1 基准测试框架
    • 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档