如何让万亿级基础大模型能够高效、低成本地服务于大规模工业级应用,并且让能够随着模型规模的提升(Scaling)而得到持续的性能增长?这一直是众多企业困扰良久的难题。
在线广告推荐系统是互联网平台的核心服务之一,其模型性能直接影响用户体验与商业价值。近年来,随着 GPT-4、 DeepSeek、 Llama 等万亿参数基础模型的成功,工业界和学术界开始探索通过模型规模化(Scaling)的方式建立基础大模型来提升推荐效果。
然而,受限于其巨额训练以及计算成本,以及工业级广告实时推荐对延时性以及部署计算资源的严格要求,基础大模型几乎很难被直接地应用于实时广告排序以及推荐系统,尤其是考虑到很多公司无法负担大规模的 GPU 来服务巨量用户群体。
因此,目前工业界广泛考虑让基础大模型(Foundation Model)的能力迁移到线上小模型(Vertical Model)当中以提高在线模型的能力,且主要采用教师-学生蒸馏(teacher-student distillation)。不过,此类解决方案在广告工业中的应用依旧面临着两大长期被忽视的挑战:受限的训练/推理预算,与动态变化的流式数据分布。这些挑战的存在使得大模型对线上模型的帮助受限,且无法规模化提升线上模型的性能。
本周,在 Meta AI 研究团队提交的一篇论文中,研究团队提出 External Large Foundation Model(ExFM)框架,首次系统性地解决了上述问题,成功支持万亿参数大模型在广告推荐中的高效服务。据文章描述,ExFM 框架实现了以下 SOTA 成果:
图 1:内部数据上基于不同规模的 FM 对 VM 进行迭代下取得的 NE 增益(时间跨度从 2023 年至 2024 年)。1X 等于 60 Million training FLOPs,1T 指 1 Trillion。
目前该论文已被 WWW 2025 Industrial Track 录用为口头报告 (Oral Presentation,根据往年数据一般为 top 10% 的论文)。本文将深入解析这一技术突破的核心思想与创新实践。
规模化的隐形门槛
工业级推荐的两大挑战
现有广告推荐方面的研究多聚焦于模型架构创新与参数规模扩展,但工业场景的特殊性导致线上部署的模型会面临以下两个主要挑战:
1. (C-1) 大流量下严格的延迟限制
2. (C-2) 流式数据的动态漂移
图 2:(a)联合蒸馏(Co-Distillation)与外部蒸馏(External Distillation);(b)流式数据下的模型迭代更新示意图;(c)ExFM 框架,以一次模型迭代为例的示意图。
对于解决挑战 C-1,常见的解决手段基于知识蒸馏,如果图 2(a)所示,即把一个参数量大的教师模型与一个参数量小的学生模型进行联合训练,而学生模型会用于在线广告推荐。然而在现实场景中,联合训练将增加学生模型的训练复杂度以至于无法满足工业级应用对在线模型进行更新训练的延时要求。另一方面,广告推荐往往涉及多个在线服务模型,每一个模型需要负责特定的阶段的广告排序任务。若对每个服务模型都建立对应的教师模型将非常低效且无法规模化。
因此,本文认为一个理想的教师模型应该满足以下两点需求:
然而在线广告工业中的流式及动态变化的数据分布(挑战 C-2)使得实现理想的教师模型变得相当困难。如图 2(b)所示,模型需要持续训练以应对不断出现的分布漂移。对此 Meta 内部数据显示,若模型停止更新,其归一化熵损失(NE)随延迟时间呈指数级上升(如图 3 所示)。这迫使工业系统必须在「模型规模」与「服务效率」间寻求平衡。
图 3:点击率预测(CTR)随着模型更新延迟而出现严重的下滑。
为了解决上述的挑战,本文提出 ExFM 框架。ExFM的核心思想是通过外部蒸馏将基础模型(FM)的知识高效迁移至多个垂直模型(VM),并结合动态适配机制应对数据漂移。该框架的核心优势包括:
ExFM 框架
外部蒸馏与动态适应的双重革新
具体而言,ExFM 的技术架构如图 2 (c) 所示,包含四大创新模块:
1. 外部蒸馏与数据增强系统(DAS, 见图 4)
图 4:数据增强系统(Data Augmentation Service,DAS)
2. 辅助头
传统蒸馏将 FM 预测与真实标签通过同一头部融合,导致偏差传递。ExFM 创新性引入独立辅助头(图 5a):
文中对此进行理论分析显示,辅助头可确保 VM 在真实标签任务上收敛至最优解,而传统单头架构因偏差传递无法实现。
图 5:(a)辅助头(Auxiliary Head)(b)学生适配器(Student Adapter)
3. 学生适配器(Student Adapter)
针对 FM 与 VM 间的新鲜度差异,ExFM 提出轻量级适配模块(图 5b):
4. 流式训练范式
实验结果
性能飞跃与工业验证
ExFM 在 Meta 内部数据集与公开数据集(TaobaoAd、Amazon 等)上均取得显著效果:
1. 单 VM 性能提升
表 1:公开数据集上的表现
2. 跨场景泛化能力
图 6:内部数据上 1000X,3.2T FM 对 跨阶段(cross-stage) VM 的 NE 增益
表 4(左)及 表 5(右):公开数据集上 FM 对跨域以及跨任务的 VM 的性能提升
3. 模块消融实验
图 7(左):对 1000X 3.2T 的 FM 增加辅助头(AH)后的 NE 变化; 图 8(右):对 1800X,2.2T 的 FM 增加学生适配器(SA)后的 NE 变化
图 9:公开数据集上,当 FM 的更新出现延迟的时,学生适配器的性能变化
结论
在本论文中,Meta AI 研究团队提出了 ExFM 框架以实现万亿参数量的基础大模型对实时广告推荐模型进行持续、规模化的性能提升。降低了LLM规模的大模型在 recsys domain 的门槛,开启了「foundation model for RecSys 」领域的时代。
© THE END
转载请联系本公众号获得授权
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有