首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >语音预训练模型wav2vec

语音预训练模型wav2vec

作者头像
Srlua
发布2024-11-27 08:26:10
发布2024-11-27 08:26:10
8550
举报
文章被收录于专栏:CSDN社区搬运CSDN社区搬运

概述

论文:wav2vec: Unsupervised Pre-training for Speech Recognition

Wav2Vec(Waveform-to-Vector)是一种在语音处理领域中具有重要意义的技术。它的由来可以追溯到Facebook AI Research(FAIR)在2019年提出的一篇论文,旨在解决语音识别中的数据标记问题。传统的语音识别系统通常需要大量标记好的语音数据进行训练,但这一过程非常耗时且昂贵。Wav2Vec的目标是通过自监督学习的方法,从未标记的语音数据中学习有用的语音表示,从而减少对标记数据的依赖。

Wav2Vec在语音处理领域具有重要的应用前景。语音是一种丰富的信息形式,但传统的语音处理技术往往受限于标记数据的稀缺性和高成本,限制了语音处理技术的发展。Wav2Vec的出现为解决这个问题提供了一种新的思路,它使我们能够更有效地使用未标记的语音数据,提高语音处理任务的性能和可扩展性。因此,Wav2Vec在语音识别、语音合成、语音情感分析等领域有广泛的应用前景。

基本原理

文章提出一种无监督的语音预训练模型 wav2vec,可迁移到语音下游任务。模型预训练一个简单的多层卷积神经网络,并提出了一种噪声对比学习二分类任务(noise contrastive binary classification task),从而使得wav2vec可以在大量未标注的数据上进行训练。实验结果表明wav2vec预训练得到的speech representation超越了帧级别的音素分类任务并且可以显著提升ASR模型的表现,同时,完全卷积架构与使用的递归模型相比,可以在硬件上并行计算。

模型结构如下图,首先将原始音频x编码为潜在空间z的 encoder network(5层卷积),再将潜在空间z转换为contextualized representation(9层卷积),最终特征维度为512x帧数。目标是在特征层面使用当前帧预测未来帧。

img
img

模型将原始音频信号 x 作为输入,基于历史信息和当前输入的信息预测未来的某些采样点,这里使用了两个编码器进行计算。

  • 编码器网络f(encoder network) 将音频信号嵌入到特征空间(latent space) 中将每个xi映射为一个特征向量zi, 类似于language model模型那样获得一个编码向量, 再基于此预测某个zi, 这里j>i;
  • 上下文网络g(context network) 结合了多个时间步长编码器以获得上下文表示(contextualized representations) 如图1。将多个zi转化为context representation C.这里有 c_ {i} =g( z_ {i} , z_ {i-1} \cdots z_ {v} )。这里的v为感受野(receptive field size)

然后, 两个网络的输出Z, C都用于损失函数(loss function) 的计算。作者在实验中使用了两种不同的感受野模型, 一种为普通规模, 用来在一般数据集上训练, 另一种则是大规模(wav2vec larqe) 用来在大数据集上训练。在这两种模型中的感受野分别对应210ms和810ms.

模型的loss中自然要包含预测未来某个z的损失。然而仅仅有正例是不够的, 因此作者利用了负采样技术, 作者从一个概率分布 p_ {n} 中采样出负样本z,最终模型的loss为区分正例和反例的contrastive loss [1]:

img
img

对于正样本,损失函数的第一项是负对数似然损失。它衡量了模型预测下一个上下文的编码的准确性。具体地说,对于每个上下文cici​,模型使用当前上下文的编码作为输入,然后预测下一个上下文的编码。通过比较预测的编码和实际编码,我们可以计算出负对数似然损失。该损失项的表示为Zi=1T−klog⁡σ(zi+kThk(ci))Zi=1T−k​logσ(zi+kT​hk​(ci​)),其中Zi=1T−kZi=1T−k​是对所有上下文的求和,zi+kTzi+kT​是下一个上下文的实际编码,hk(ci)hk​(ci​)是模型对当前上下文的预测编码,σσ是sigmoid函数,将编码二者相似度转换为概率。

对于负样本,损失函数的第二项是对预测的负编码的正则化项。这个负编码是通过对当前上下文的预测编码hk(ci)hk​(ci​)与一个随机生成的编码z~TzT的点积得到的。通过对负编码的正则化,我们鼓励模型不仅仅关注正确的预测,还要确保预测的编码与随机编码之间的点积尽可能小。这个正则化项的表示为λE[log⁡σ(−z~Thk(ci))]λE[logσ(−zThk​(ci​))],其中λλ是正则化的权重,EE是对随机编码的期望。

通过将这两个项相加,我们得到了wav2vec模型的总损失函数。这个损失函数的目标是最小化正样本的负对数似然损失,同时确保负样本的正则化项尽可能小。这样,模型可以学习到一个有效的编码器,将语音信号映射到有用的表示空间中,以便后续的语音识别任务。

未来应用与挑战

Wav2Vec在语音处理领域有多种应用。它在语音识别中具有重要的作用。通过学习有用的语音表示,Wav2Vec可以显著改善传统的基于标记数据的语音识别系统。其次,Wav2Vec也可以用于语音合成,即将文本转化为语音。通过学习语音表示,Wav2Vec可以生成自然流畅的语音输出。此外,Wav2Vec还可以应用于语音情感分析,帮助识别和理解说话者的情感状态。

然而,Wav2Vec也面临一些挑战。训练一个高质量的Wav2Vec模型通常需要大量的计算资源和时间。模型的训练过程可能需要在大规模的语音数据上进行,并且可能需要使用分布式计算平台。其次,Wav2Vec在处理长时间的语音数据时可能存在一些限制,因为较长的语音片段可能导致内存和计算资源的限制。此外,Wav2Vec对于噪声和低质量语音数据的鲁棒性还有待改进。vq-wav2vec、wav2vec2 进行了相关的改进,感兴趣可以进一步学习。

参考案例

如果有开源的实现可用,可以使用相应的库和工具来简化这些步骤。例如,Facebook fairseq 源码库提供了Wav2Vec相关的模型和工具,可以方便地训练和使用Wav2Vec模型。以下是一个使用Hugging Face库的代码示例:

代码语言:javascript
复制
import torch
import fairseq

cp_path = 'wav2vec_large.pt'
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
model = model[0]
model.eval()

wav_input_16khz = torch.randn(1,10000)
z = model.feature_extractor(wav_input_16khz)
c = model.feature_aggregator(z)

部署文档

源码库地址 GitHub(FAIR):https://github.com/pytorch/fairseq 文档地址: https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md 源码系列: https://paperswithcode.com/paper/unsupervised-speech-recognition#code

Requirements.txt

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-11-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
  • 基本原理
  • 未来应用与挑战
  • 参考案例
  • 部署文档
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档