前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >为啥大模型还没完全取代你?

为啥大模型还没完全取代你?

作者头像
JavaEdge
发布2024-05-25 14:43:56
650
发布2024-05-25 14:43:56
举报
文章被收录于专栏:JavaEdge
10395d3224d368f5106e00a0e14d1c03.png
10395d3224d368f5106e00a0e14d1c03.png

1 大语言模型发展

d16fa8e1020e04703b1a2c1bb7619c22.png
d16fa8e1020e04703b1a2c1bb7619c22.png

LLM,Large Language Model,大语言模型。为什么叫2.0## 1 不具备记忆能力的

它是零状态的,我们平常在使用一些大模型产品,尤其在使用他们的API的时候,我们会发现那你和它对话,尤其是多轮对话的时候,经过一些轮次后,这些记忆就消失了,因为它也记不住那么多。

2 上下文窗口的限制

大模型对其input和output,也就是它的输入输出有数量限制。为了保护它的,这计算能力或保护相当于一个带宽概念,如说openAI之前只有32k。最新上下文窗口扩张到128k,大概相当于一本《Clean Code》,这个角度来说,这个问题其实已被解决。

但其他很多模型上下文窗口还是比较小,就有很多限制。如不可发一长段prompt或提示词,也不可不停在那对话,你就需要注意计算你整个窗口token消耗,避免被截断,可能就没有办法去输入和输出。

3 实时信息更新慢,新旧知识难区分

基于预训练的模型,拿大量数据来在神经网络的训练,然后形成模型,它的知识库就依赖于拿去训练的这些材料。

底模数据较小时,就会出现幻觉,胡乱回答。

4 无法灵活的操控外部系统

很多大模型只可对话,但无法作为一个外脑去操作外部的一些系统。虽然chatgpt出现插件机制和插件开发工具。但实际使用后,它还是相当于提供一个非常标准的东西,定制开发或更深度融合较难。

比如想用大模型作为一个外脑操控智能家居系统、操控汽车,都需要有一些连接器和框架帮助。

5 无法为领域问题提供专业靠谱的答案

你问他一些泛泛而谈的东西,他都能回答很好,但是你一旦问他一个非常专业问题,他就回答不上来,因为这块儿的专业问题,他可能不涉及。虽然他回答的答案是看起来是像一个人在回答,但一眼就能看出来那个答案不对。

针对这些问题,业界基本提出两种解决方案,但也都不能完全解决。

6 解决方案

6.1 微调(Fine-tunning)

主要解决的就是专业问题,专业知识库问题,包括知识更新问题。

就是把这些数据喂给我们的大模型啊,再做一次训练。基本上一次训练也无法解决这个知识感知信息问题,它只能更新它的数据库。成本较高。因为相当于把你的数据问喂给OpenAI,然后全量训练一次,成本相当高。

适用场景

做一些自有的大量数据的行业模型。所谓行业模型,如某专业领域的公司,积累的大量数据,如制药公司在制药过程积累大量制药数据,你希望这个数据以AI智能方式指导你的工作,就可用这种方式。把你的这个数据去喂给喂给大模型,对它再做一次调教。

这涉及一个概念

MaaS

module as a service,模型即服务。通过这个微调在大模型基础上灌入行业数据,实现这种行业模型,就适合手里拥有大量行业数据的。

这也只能解决领域数据专业性和知识库更新问题,无法解决操作外部系统、记忆能力、窗口扩张。

6.2 提示词工程(prompt engineering)

通过上下文提示词设计引导。在LLM基础上把这种专业数据通过:

  • Embedding嵌入
  • prompt提示词

这两个工具实现精准的专业回答,同时可实现:

  • 实时系统的感知
  • 操作外部系统
  • 记忆增强
  • 窗口控制扩张

好处明显,无需训练,不用去在LLM上面做训练。

适用场景

适合数据样本比较少的这种场景。如你有一本书,你希望说从这本书上去得到一些信息,但是你又不想去读它,你希望有个机器人,你问他问题,他直接从书里面找到答案。这种就可以把书的数据作为专业数据,然后嵌入到我们的这个LLM,然后再通过prompt方式去引导,得到一个精确的答案。

这过程中间甚至还可把这些答案,和我的打印机系统连接,可直接打印。

两种方式都可解决大模型问题,但适用场景不同,各自擅长点也不一样,很多时候,两者结合用效果较好。

微调,现在已经把门槛降到很低了,可直接把。把你想要微调的数据直接upload上去就可,但闭源大模型的数据安全的问题,数据所有性问题和成本问题。

提示词工程适合开源大模型,如chatglm,在本地部署大模型,再做这种词嵌入和提示词引导,就可本地实现专业行业模型。但底层LLM可能没用强大的,可能只是一个6b13b,它可能在语言组织或说一些智能度上稍低。代表就是 langchain。

7 总结

09655cc04f6af9deeca4865e4310be65.png
09655cc04f6af9deeca4865e4310be65.png

大模型的这几个问题都有,有两套这样的解决方案:

  • Model as aSerivce 模型即服务通过“微调”技术,在LLM基础上灌入行业数据,实现行业模型
  • promptengineering提示词工程,通过上下文提示词设计31号LM输出精确答案

都有自己的优劣点,然后都有自己适用的场景。所以用什么方案呢?其实是看我们这个这个整个的这个项目的情况,专栏偏向第二种提示词工程, 即langchain框架的方式。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-05-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 大语言模型发展
  • 2 上下文窗口的限制
  • 3 实时信息更新慢,新旧知识难区分
  • 4 无法灵活的操控外部系统
  • 5 无法为领域问题提供专业靠谱的答案
  • 6 解决方案
    • 6.1 微调(Fine-tunning)
      • 适用场景
      • MaaS
    • 6.2 提示词工程(prompt engineering)
      • 适用场景
  • 7 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档