时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
下面举一个具体的例子:
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
在这个例子中Func1 执行的基本操作次数 :
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。 2、在修改后的运行次数函数中,只保留最高阶项。 3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。 使用大O的渐进表示法以后,Func1的时间复杂度为:
。
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。什么意思?就是比如说上面的代码,当N=1000时(可以将N看成无穷大),
=1000000,而
=1002010,
所产生的和2010相对于
所产生的1000000显得对结果影响不大(2010在1000000面前就是弟弟),所以入上面的例子所示,Func1的时间复杂度写做:
。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。
例1:
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++k)
{
++count;
}
for (int k = 0; k < N; ++k)
{
++count;
}
printf("%d\n", count);
}
例1中时间复杂度为
,因为不知道M和N的大小关系。若题目中有说到M远大于N,那么时间复杂度就为
,N远大于M,那么时间复杂度就为
。
例2:
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++k)
{
++count;
}
printf("%d\n", count);
}
例2中时间复杂度为
。有人这时可能就会疑惑了,如果我将例2中的k改成10000或者是100000,那结果还会是
吗?答案是一定的。因为在现行的家用计算机的CPU运算速度大约为每秒50亿次。即使k取到32位机器下整数的最大值4294967296,大部分家用计算机依旧能够在一秒之内计算出来,所以只要当k取到常数次时,时间复杂度就是
。
例3:
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
例3基本操作执行最好N次(该数组本身就是有序的),最坏执行了N*(N-1)/2次(每相邻两个数之间都交换),通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)。
例4:
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n - 1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end - begin) >> 1);
if (a[mid] < x)
begin = mid + 1;
else if (a[mid] > x)
end = mid - 1;
else
return mid;
}
return -1;
}
例4为二分查找,基本操作执行最好1次(就是第一个中间数),最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
为什么是logN?因为当N/2/2/2....=1,设除了x个2,此时
,基本操作
。
例5:
long long Fac(size_t N)
{
if (0 == N)
{
return 1;
}
return Fac(N - 1) * N;
}
例5通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
例6:
long long Fib(size_t N)
{
if (N < 3)
{
return 1;
}
return Fib(N - 1) + Fib(N - 2);
}
所以例6时间复杂度 =
。