前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >平均值灰度化

平均值灰度化

作者头像
裴来凡
发布于 2022-05-28 08:48:25
发布于 2022-05-28 08:48:25
80700
代码可运行
举报
运行总次数:0
代码可运行
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread('C:/Users/xpp/Desktop/Lena.png')#原始图像
cv2.imshow("original",img)
max_gray=np.zeros(img.shape[0:2],dtype='uint8')
ave_gray=np.zeros(img.shape[0:2],dtype='uint8')
weight_gray=np.zeros(img.shape[0:2],dtype='uint8')
for ii in range(img.shape[0]):
    for jj in range(img.shape[1]):
        r,g,b=img[ii,jj,:]
        ave_gray[ii,jj]=(r+g+b)/3#平均值灰度化
cv2.imshow("result",ave_gray)        
cv2.waitKey()
cv2.destroyAllWindows()

算法:平均值灰度化方法将彩色图像中像素的R分量、G分量和B分量3个数值的平均值作为灰度图的灰度值。灰度图像能以较少的数据表征图像的大部分特征,因此在某些算法的预处理阶段需要进行彩色图像灰度化,以提高后续算法的效率。将彩色图像转换为灰度图像的过程称为彩色图像灰度化。在RGB模型中,位于空间位置(x,y)的像素点的颜色用该像素点的R分量R(x,y)、G分量G(x,y)和B分量B(x,y)3个数值表示。灰度图像每个像素用一个灰度值(又称强度值、亮度值)表示即可。 设f(x,y)表示位于空间位置(x,y)处的像素(该像素的R分量、G分量、B分量值分别为R(x,y)、G(x,y)、B(x,y))的灰度化:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-04-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 图像处理与模式识别研究所 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
加权平均值灰度化
算法:加权平均值灰度化方法将彩色图像中像素的R分量、G分量和B分量3个数值的加权平均值作为灰度图的灰度值。灰度图像能以较少的数据表征图像的大部分特征,因此在某些算法的预处理阶段需要进行彩色图像灰度化,以提高后续算法的效率。将彩色图像转换为灰度图像的过程称为彩色图像灰度化。在RGB模型中,位于空间位置(x,y)的像素点的颜色用该像素点的R分量R(x,y)、G分量G(x,y)和B分量B(x,y)3个数值表示。灰度图像每个像素用一个灰度值(又称强度值、亮度值)表示即可。 设f(x,y)表示位于空间位置(x,y)处的像素(该像素的R分量、G分量、B分量值分别为R(x,y)、G(x,y)、B(x,y))的灰度化:
裴来凡
2022/05/28
1.4K0
加权平均值灰度化
彩色变换
算法:彩色变换是将红色变换、绿色变换和蓝色变换的映射关系绘制到一幅图像,可以表示灰度图像到彩色图像的红色通道、绿色通道和蓝色通道的映射关系。
裴来凡
2022/05/28
6790
彩色变换
[Python图像处理] 十四.基于OpenCV和像素处理的图像灰度化处理
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
Eastmount
2022/11/25
2.7K0
[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效
前面一篇文章我讲解了基于K-Means聚类的图像分割或量化处理,但突然发现市场上讲解图像量化和采样代码的文章很缺乏,因此结合2015年自己的一篇 文章 及相关知识,分享一篇Python图像量化及处理的博文供同学们学习。基础性文章,希望对你有所帮助。
Eastmount
2023/09/01
1.1K0
[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
Eastmount
2021/12/02
3K0
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
OpenCV图像处理(二)
zeros 相当于创建一张黑色的图,每个像素的每个通道都为0,Scalar(0,0,0);
AnieaLanie
2021/12/24
5470
数字图像处理学习笔记(十一)——用Python代码实现图像增强之线性变换、对数变换、幂律变换、分段线性变换、灰度级分层、直方图均衡化、平滑滤波器、锐化滤波器
在数字图像处理学习笔记(八)中,已对图像增强之线性变换、对数变换、幂律变换、分段线性变换、灰度级分层等做过详细理论论述,本文将对上述理论知识做实践方面的实现。
荣仔_最靓的仔
2021/02/02
4.2K0
数字图像处理学习笔记(十一)——用Python代码实现图像增强之线性变换、对数变换、幂律变换、分段线性变换、灰度级分层、直方图均衡化、平滑滤波器、锐化滤波器
【OpenCV】Chapter1.图像的基本操作
扩展使用: 可以通过cv2.namedWindow和cv2.resizeWindow来指定窗口显示尺寸。
zstar
2022/09/21
1.1K0
手把手教你用Python给小姐姐美个颜
彩色图像比灰度图像拥有更丰富的信息,它的每个像素通常是由红(R)、绿(G)、蓝(B)3个分量来表示的,每个分量介于0~255之间。
IT阅读排行榜
2020/05/27
8960
手把手教你用Python给小姐姐美个颜
基于机器视觉的图像灰度化方法比较分析
由于现代工业生产中大部分的工件是彩色物件,而对于计算机来说彩色图片包含的信息太多,以至于对于计算机来说任务过于繁重。处理图像的时候,要分别对RGB三种分量进行处理,实际上RGB并不能反映图像的形态特征,只是从光学的原理上进行颜色的调配。因此选择一种合适的并且使用的灰度化算法作为预处理的方式对于工业生产和信息处理具有非常重大的意义。
小白学视觉
2021/08/05
1.2K0
基于机器视觉的图像灰度化方法比较分析
Opencv 图像处理:图像通道、直方图与色彩空间
将彩色图像,分成b 、g 、r 3个单通道图像。方便我们对 BGR 三个通道分别进行操作。
timerring
2022/11/02
2.2K0
Opencv 图像处理:图像通道、直方图与色彩空间
彩色图像到灰度转换 常见方法汇总与对比
今天来说说图像处理最基础知识,彩色图像与灰度图像转换,一般大家熟知的彩色图像转灰度的公式如下:
OpenCV学堂
2019/05/31
1.7K0
【OpenCV】Chapter10.色彩转换与图像绘制
常见的色彩空间包括:GRAY 色彩空间(灰度图像)、XYZ 色彩空间、YCrCb 色彩空间、HSV 色彩空间、HLS 色彩空间、CIELab 色彩空间、CIELuv 色彩空间、Bayer 色彩空间等。
zstar
2022/09/28
2.7K0
【OpenCV】Chapter10.色彩转换与图像绘制
OpenCV 系列教程2 - Core 组件
若是单通道的像素,像素有 256(0-255)个值,若是三通道,则颜色数就更多(一千六百多万种),如此多的颜色进行处理,会对算法的性能造成影响。这些颜色中,有代表性的颜色只是小部分。
机器视觉CV
2019/07/15
1.1K0
OpenCV 系列教程2 - Core 组件
[Python图像处理] 五.图像融合、图像加减法、图像逻辑运算及图像类型转换
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
Eastmount
2021/12/02
5.5K0
[Python图像处理] 五.图像融合、图像加减法、图像逻辑运算及图像类型转换
opencv(4.5.3)-python(二十三)--直方图的寻找、绘制、分析
那么什么是直方图?你可以把直方图看作是一种图,它可以让你对图像的灰度分布有一个整体的了解。它是一个在X轴上有像素值(范围从0到255,不一定),在Y轴上有图像中相应像素数的图。
用户9875047
2023/02/26
8140
opencv(4.5.3)-python(二十三)--直方图的寻找、绘制、分析
图像增强综述
作者:方阳, 转载请注明地址。 文件和代码可以在Github下载, markdown推荐用typora打开。 这篇文章是DIP的第二次作业,对图像增强技术进行综述,目录如下:
努力努力再努力F
2019/04/29
1.6K0
图像增强综述
【OpenCV】Chapter4.灰度变换与直方图
二值图像指的是只有黑色和白色两种颜色的图像。每个像素点可以用 0/1 表示,0 表示黑色,1 表示白色。 OpenCV提供了cv2.threshold,可以对图像进行二值化处理。
zstar
2022/09/22
1.4K0
【OpenCV】Chapter4.灰度变换与直方图
【Python3+OpenCV】实现图像处理—灰度变换篇
OpenCV是一个C++库,目前流行的计算机视觉编程库,用于实时处理计算机视觉方面的问题,它涵盖了很多计算机视觉领域的模块。在Python中常使用OpenCV库实现图像处理。
潘永斌
2020/04/26
6.4K0
灰度分层
算法:灰度分层是按照灰度值范围划分为不同的层级,然后给每个层级赋予不同的颜色,从而增强不同层级的对比度。灰度分层技术将灰度图像转换为伪彩色图像,且伪彩色图像的颜色种类数目与强度分层的数目一致。
裴来凡
2022/05/28
1.1K0
灰度分层
推荐阅读
相关推荐
加权平均值灰度化
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验