Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Hive Join优化

Hive Join优化

原创
作者头像
大数据学习与分享
修改于 2020-07-31 10:07:38
修改于 2020-07-31 10:07:38
2.2K0
举报

在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化:

1.只支持等值连接

2.底层会将写的HQL语句转换为MapReduce,并且reduce会将join语句中除最后一个表外都缓存起来

3.当三个或多个以上的表进行join操作时,如果每个on使用相同的字段连接时只会产生一个mapreduce

具体的优化建议:

1.合理的设置map和reduce数量

jvm重用。可在hadoop的mapred-site.xml中设置jvm被重用的次数,参数mapred.job.reuse.jvm.num.tasks

2.对于任务重没有依赖关系的阶段开启并发执行,设置属性:set hive.exec.parallel=true

3.查询分区表时,在查询条件中指定分区

4.尽量使用left semi join 替代in、not in、exists。

因为left semi join在执行时,对于左表中指定的一条记录,一旦在右表中找到立即停止扫描,效率更高

5.当多个表进行查询时,从左到右表的大小顺序应该是从小到大。原因:hive在对每行记录操作时会把其他表先缓存起来,直到扫描最后的表进行计算

6.对于经常join的表,针对join字段进行分桶,这样在join时不必全表扫描

7.小表进行mapjoin

如果在join的表中,有一张表数据量较小,可以存于内存中,这样该表在和其他表join时可以直接在map端进行,省掉reduce过程,效率高。设置方式主要分两种:

1)自动方式

set hive.auto.convert.join=true;

hive.mapjoin.smalltable.filesize,设置可以mapjoin的表的大小,默认值是25Mb

2)手动方式

select  /*+ mapjoin(A)*/  x.a,  y.b from t_x x join t_y y on x.id=y.id;

8.同一种数据的多种处理:从一个数据源产生的多个数据聚合,无需每次聚合都需要重新扫描一次。

例如:任务重需要执行insert overwrite table t_y select * from t_x;和

insert overwrite table t_z select * from t_x;

可以优化成:from t_x insert overwrite table t_y select * insert overwrite table t_z select *

9.join中的数据倾斜处理

set hive.optimize.skewjoin=true;

set hive.skewjoin.key=100000;

当单个reduce节点处理数据阈值,会进行skewjoin,建议设置为平均数据量的2-4倍。

原理:会产生两个job,第一个job会将超过hive.skewjoin.key设置值的记录的key加上一些随机数,将这些相同的key打乱,然后分配到不同的节点上面进行计算。最后再启动一个job,在第一个job处理的基础上(即第一个job的reduce输出结果)再进行处理,将相同的key分发到相同的节点上处理。因为会产生两个job进行处理,在实际使用中还是要注意以及阈值的设置。

10.limit调优

limit语句通常是执行整个语句后返回部分结果。但通过设置参数set hive.limit.optimize.enable=true,将针对查询对元数据进行抽样。同时可能还需要设置以下两个参数:

set hive.limit.row.max.size=10000;设置最小的采样容量

set hive.limit.optimize.limit.file=20;设置最大的采样样本数

这种优化方式存在一个缺点:有可能部分数据永远不会被处理到

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
hive基础总结(面试常用)
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 Metastore (hive元数据) Hive将元数据存储在数据库中,比如mysql ,derby.Hive中的元数据包括表的名称,表的列和分区及其属性,表的数据所在的目录 Hive数据存储在HDFS,大部分的查询、计算由mapreduce完成 Hive数据仓库于数据库的异同 (1)由于Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言, 再无类似之处。 (2)数据存储位置。 hdfs raw local fs (3)数据格式。 分隔符 (4)数据更新。hive读多写少。Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。 INSERT INTO … VALUES添加数据,使用UPDATE … SET修改数据 不支持的 HDFS 一次写入多次读取 (5) 执行。hive通过MapReduce来实现的 而数据库通常有自己的执行引擎。 (6)执行延迟。由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive执行延迟高的因素是MapReduce框架 (7)可扩展性 (8)数据规模。 hive几种基本表类型:内部表、外部表、分区表、桶表 内部表(管理表)和外部表的区别: 创建表 外部表创建表的时候,不会移动数到数据仓库目录中(/user/hive/warehouse),只会记录表数据存放的路径 内部表会把数据复制或剪切到表的目录下 删除表 外部表在删除表的时候只会删除表的元数据信息不会删除表数据 内部表删除时会将元数据信息和表数据同时删除 表类型一、管理表或内部表Table Type: MANAGED_TABLE
用户1217611
2019/05/25
8410
(六)Hive优化
小文件问题的影响 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
wolf
2020/09/20
2.3K0
【Hive】hive 数据倾斜、优化策略、hive执行过程、垃圾回收
group by和聚合函数(sum count max min)一起使用 group by和以上的聚合函数一起使用的时候会默认在map端执行一次combiner(局部聚合:减少reducetask的数据量,这个时候reduce端接受的数据就会大大减少 一般不会出现数据倾斜 select id,count(*) from course group by id;
从大数据到人工智能
2022/09/16
1.8K0
【Hive】hive 数据倾斜、优化策略、hive执行过程、垃圾回收
3万字史诗级 Hive 性能调优(建议收藏)
Hive 作为大数据领域常用的数据仓库组件,在平时设计和查询的时候要特别注意效率 。影响 Hive 效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、Job或I/O过多、MapReduce 分配不合理等等。 对Hive 的调优既包含 Hive 的建表设计方面,对 HiveHQL 语句本身的优化,也包含 Hive 配置参数 和 底层引擎 MapReduce 方面的调整 。
肉眼品世界
2022/06/15
4.8K0
3万字史诗级 Hive 性能调优(建议收藏)
工作常用之Hive 调优【四】HQL 语法优化
列裁剪就是在查询时只读取需要的列,分区裁剪就是只读取需要的分区。当列很多或者
Maynor
2022/10/04
1.3K0
工作常用之Hive 调优【四】HQL 语法优化
Hive知识归纳——详解 hive 各个知识点
CREATE FUNCTION [db_name.] function_name AS class_name [USING JAR|FILE|ARCHIVE 'file_uri' [, JAR|FILE|ARCHIVE 'file_uri'] ];
solve
2019/10/30
2K0
Hive知识归纳——详解 hive 各个知识点
Hive参数调优
  大多数的Hadoop Job是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务时消耗可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。
挽风
2021/04/13
1.6K0
Hive参数调优
(学习之路)Hive数据倾斜解决办法
hive是基于大数据开发的一组用于数据仓库的api,其主要功能是将HQL(HIVE SQL)转换成MapReduce执行。所以对hive的优化几乎等于对MapReduce的优化,主要在io和数据倾斜方面进行优化。
木野归郎
2023/02/25
1.2K0
(学习之路)Hive数据倾斜解决办法
Hive/HiveSQL常用优化方法全面总结
Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等等。对Hive的调优既包含对HiveSQL语句本身的优化,也包含Hive配置项和MR方面的调整。
王知无-import_bigdata
2019/07/01
25K0
Hive/HiveSQL常用优化方法全面总结
大厂都在用的Hive优化
Hive作为大数据分析领域常用的仓库工具,即使是现在流式计算如火如荼背景下,Hive依然倍受各大厂商挚爱。使用Hive过程中,面对各种各样的查询需求,需要具有针对性的优化下面内容就给大家分别介绍下。
大数据老哥
2021/03/05
1.6K0
大厂都在用的Hive优化
hive优化总结
hive强大之处不要求数据转换成特定的格式,而是利用hadoop本身InputFormat API来从不同的数据源读取数据,同样地使用OutputFormat API将数据写成不同的格式。所以对于不同的数据源,或者写出不同的格式就需要不同的对应的InputFormat和OutputFormat类的实现。以stored as textFile为例,其在底层java API中表现是输入InputFormat格式:TextInputFormat以及输出OutputFormat格式:HiveIgnoreKeyTextOutputFormat。这里InputFormat中定义了如何对数据源文本进行读取划分,以及如何将切片分割成记录存入表中。而OutputFormat定义了如何将这些切片写回到文件里或者直接在控制台输出。
数字悠客
2020/05/27
1.8K0
面试必备技能-HiveSQL优化
Hive SQL基本上适用大数据领域离线数据处理的大部分场景。Hive SQL的优化也是我们必须掌握的技能,而且,面试一定会问。那么,我希望面试者能答出其中的80%优化点,在这个问题上才算过关。
王知无-import_bigdata
2019/05/09
1.4K0
「Hive进阶篇」万字长文超详述hive企业级优化
原创推文链接:https://mp.weixin.qq.com/s/GHwYVEwAS8WgNBLb14NC4A
大数据阶梯之路
2022/10/01
1.3K0
「Hive进阶篇」万字长文超详述hive企业级优化
Hive的调优你都知道那些?
我们在工作中还是在学习中有都会遇到我们写的HQL语句执行效率不高,那我们该怎么提高查询效率那,这篇文章就带你从不同维度讲解,让你的HQL瞬间提高一个档次。记得收藏
大数据老哥
2021/02/04
9770
Hive的调优你都知道那些?
知行教育项目_Hive参数优化
我们知道传统的OLTP数据库一般都具有索引和表分区的功能,通过表分区能够在特定的区域检索数据,减少扫描成本,在一定程度上提高查询效率,我们还可以通过建立索引进一步提升查询效率。在Hive数仓中也有索引和分区的概念。
Maynor
2021/04/09
8140
快速学习-Hive企业级调优
Fetch 抓取是指,Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:SELECT * FROM employees;在这种情况下,Hive 可以简单地读取 employee 对应的存储目录下的文件,然后输出查询结果到控制台。 在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive默认是 minimal,该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不走mapreduce。
cwl_java
2020/02/21
9980
快速学习-Hive企业级调优
实操 | Hive 数据倾斜问题定位排查及解决
多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例。当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措。
五分钟学大数据
2021/09/22
2.5K0
大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
1、CentOS联网   配置CentOS能连接外网。Linux虚拟机 ping www.baidu.com 是畅通的。 注意:采用root角色编译,减少文件夹权限出现问题。 2、jar包准备(hadoop源码、JDK8、maven、protobuf) (1)hadoop-2.7.2-src.tar.gz (2)jdk-8u144-linux-x64.tar.gz (3)snappy-1.1.3.tar.gz (4)apache-maven-3.0.5-bin.tar.gz (5)protobuf-2.5.0.tar.gz
黑泽君
2019/03/11
1.2K0
大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
Hive常用性能优化方法实践全面总结
Apache Hive作为处理大数据量的大数据领域数据建设核心工具,数据量往往不是影响Hive执行效率的核心因素,数据倾斜、job数分配的不合理、磁盘或网络I/O过高、MapReduce配置的不合理等等才是影响Hive性能的关键。
大数据学习与分享
2020/12/14
2.8K0
Hive快速入门系列(15) | Hive性能调优 [二] 表的优化
  将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。 实际测试发现:新版的hive已经对小表JOIN大表和大表JOIN小表进行了优化。小表放在左边和右边已经没有明显区别。
不温卜火
2020/10/28
1.2K0
Hive快速入门系列(15) | Hive性能调优 [二] 表的优化
相关推荐
hive基础总结(面试常用)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档