前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习的学习历程

深度学习的学习历程

作者头像
统计学家
发布2019-06-12 20:43:14
6020
发布2019-06-12 20:43:14
举报
文章被收录于专栏:机器学习与统计学

作者 | mileistone

来源 | https://zhuanlan.zhihu.com/p/34524772

我刚入门深度学习的时候,看了各种深度学习相关的资料,花书、cs231n、neural networks and deep learning、cs224d等等。

看来看去,感觉好像什么都懂了,不就那些模块吗,conv、lstm、pooling、fc、drop out等等,这些模块的公式早就能背得滚瓜烂熟。alexnet、vgg、googlenet、resnet等网络就像乐高一样,把这些模块当积木一样组合起来,好像也没啥特别的。

又好像什么都不懂,学会这些模块的公式就算会深度学习了吗?整个深度学习的学习周期是怎样的,我下一步应该干啥?这些模块看起来平平无奇,为什么组合在一起就能发挥这么大威力?为什么drop out能起到正则作用?L1正则和L2正则有什么区别?cnn、rnn、dnn除了公式不一样外到底有啥区别?诶,最后一个fc层看起来跟多类别lr分类器好像啊,它们是一回事吗?各种各样的问题,不一而足,而每个问题我都不知道答案。

看的这些资料里面要么没讲到这些问题,要么用比较数学的方式解释,对初学者非常不友好。

我觉得初学者最缺的不是深度学习的资料,以及那一堆公式,而是一个指路人,他能用通俗易懂的方式把深度学习在你面前掰开,又亲手把它给捏回去,还能告诉你深度学习整个的学习周期是怎样的,这样就能让你少走很多弯路,提高学习的效率。

如果现在可以穿越到我刚入门的时候,我会这样跟当时的自己讲:

深度学习的资料汗牛充栋,不过入门看其中一两本经典的书就够了,比如花书《deep learning》和stanford的cs231n。

入门不要贪多,不要贪图一下就啥都能理解。入门一定要快,不要恋战,比较难理解的知识点先跳过去。入门的目的是对深度学习的历史、概貌有个大致了解,知道深度学习能干什么。

深度学习入门的确容易,就那么几个模块,conv、rnn、relu、pooling、fc等等,只要你懂线性代数、求导,然后看一两本经典的书就入门了。

但是想学好实际上却不那么容易。我觉得学习深度学习分为三个阶段。

一、看山是山

conv、rnn、relu、pooling、fc等等模块的公式背得滚瓜烂熟,定义烂熟于心,但是别人要问两个为什么,立马就招架不住了。

这个阶段主要是看教材、课程,打好基础。

二、看山不是山

conv不就是模板匹配+sliding window嘛,跟用hog进行行人检测的过程多类似呀,只不过conv里的模板参数可以学;drop out不就是集成学习的思想嘛,它跟random forest多像啊;L1正则和L2正则是加在模型上的prior,比如L1正则假定了一个拉普拉斯分布,L2正则假定了一个高斯分布;fc不就是矩阵里空间变换嘛;最后一层fc加softmax不就是多分类lr嘛,之前的部分可以看做一个特征提取器,然后用多分类lr对特征进行分类。

cnn和rnn是加了assumption的dnn。cnn的assumption是数据在二维空间上存在着相关性,rnn的assumption是数据在一维空间上存在着相关性。心想“诶,一维空间是二维空间的特例,那cnn岂不是可以用来解决需要使用rnn的问题?我擦,大发现,看来可以搞一波事情了,谷歌了一下,发现facebook已经用cnn来做翻译了,holy shit,晚了一步”。

这个阶段主要是思考上个阶段看的东西,将书本里的知识内化为自己的知识。

三、看山还是山

慢慢意识到,没有最好的模型,只有最合适的模型。之前听到实验室学弟问“深度学习这么厉害,为啥还要学lr、naive bayes、svm这些low的模型”,我想这应该是很多初学者的疑问,我当初也有这样的疑问。

尺有所长,寸有所短。每个模型都有它适用的范围(其实也就是assumption),深度学习也不例外,超过了适用范围,啥模型都得嗝屁。比如你的数据天然是线性可分的,那lr或者svm将会是最好的选择,如果你选了高大上的深度学习,结果反而会适得其反。

面对一个任务,分析这个任务的assumption,然后去你的武器库(也就是各种模型)里寻找跟这个assumption匹配的武器,知己知彼,方能百战不殆。不要瞧不起svm这样的匕首,也不要太高看深度学习这样的屠龙刀。

这个阶段就是要融会贯通,无招胜有招。大音希声,大象无形,武功高强者,飞花摘叶俱可伤人。

推荐阅读

统计学公开课大盘点

统计学中的常用符号

机器学习包含哪些学习思想?

机器学习、深度学习思维导图

一张让你代码能力突飞猛进的速查表

一文读懂深度学习:从神经元到BERT

Github标星3K+,热榜第三,一网打尽数据科学速查表

Github标星2w+,热榜第一,如何用Python实现所有算法

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

卅年春秋,谁主沉浮?分析400篇任正非演讲稿,一探任正非的心胸与格局

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习与统计学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、看山是山
  • 二、看山不是山
  • 三、看山还是山
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档