前言
来源于GitHub上大神整理的20到深度学习非常经典的20问,一起来看看吧!
首先权值共享就是滤波器共享,滤波器的参数是固定的,即是用相同的滤波器去扫一遍图像,提取一次特征特征,得到feature map。在卷积网络中,学好了一个滤波器,就相当于掌握了一种特征,这个滤波器在图像中滑动,进行特征提取,然后所有进行这样操作的区域都会被采集到这种特征,就好比上面的水平线。
局部连接,权值共享,池化操作,多层次结构。
首先所谓过拟合,指的是一个模型过于复杂之后,它可以很好地“记忆”每一个训练数据中随机噪音的部分而忘记了去“训练”数据中的通用趋势。过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。
Parameter Norm Penalties(参数范数惩罚);Dataset Augmentation (数据集增强);Early Stopping(提前终止);Parameter Tying and Parameter Sharing (参数绑定与参数共享);Bagging and Other Ensemble Methods(Bagging 和其他集成方法);dropout;regularization; batch normalizatin。是解决Overfitting的常用手段。
L1 范数(L1 norm)是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。 比如 向量 A=[1,-1,3], 那么 A 的 L1 范数为 |1|+|-1|+|3|。简单总结一下就是:
L1 范数可以使权值稀疏,方便特征提取。 L2 范数可以防止过拟合,提升模型的泛化能力。
(7)TensorFlow计算图
Tensorflow 是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图,可以把计算图看做是一种有向图,Tensorflow 中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系。
(1). 可以使用更高的学习率。如果每层的scale不一致,实际上每层需要的学习率是不一样的,同一层不同维度的scale往往也需要不同大小的学习率,通常需要使用最小的那个学习率才能保证损失函数有效下降,Batch Normalization将每层、每维的scale保持一致,那么我们就可以直接使用较高的学习率进行优化。
(2). 移除或使用较低的dropout。 dropout是常用的防止overfitting的方法,而导致overfit的位置往往在数据边界处,如果初始化权重就已经落在数据内部,overfit现象就可以得到一定的缓解。论文中最后的模型分别使用10%、5%和0%的dropout训练模型,与之前的40%-50%相比,可以大大提高训练速度。
(3). 降低L2权重衰减系数。 还是一样的问题,边界处的局部最优往往有几维的权重(斜率)较大,使用L2衰减可以缓解这一问题,现在用了Batch Normalization,就可以把这个值降低了,论文中降低为原来的5倍。
(4). 取消Local Response Normalization层。 由于使用了一种Normalization,再使用LRN就显得没那么必要了。而且LRN实际上也没那么work。
(5). Batch Normalization调整了数据的分布,不考虑激活函数,它让每一层的输出归一化到了均值为0方差为1的分布,这保证了梯度的有效性,可以解决反向传播过程中的梯度问题。目前大部分资料都这样解释,比如BN的原始论文认为的缓解了Internal Covariate Shift(ICS)问题。
AI项目体验地址 https://loveai.tech
当训练较多层数的模型时,一般会出现梯度消失问题(gradient vanishing problem)和梯度爆炸问题(gradient exploding problem)。注意在反向传播中,当网络模型层数较多时,梯度消失和梯度爆炸是不可避免的。
深度神经网络中的梯度不稳定性,根本原因在于前面层上的梯度是来自于后面层上梯度的乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景。前面的层比后面的层梯度变化更小,故变化更慢,故引起了梯度消失问题。前面层比后面层梯度变化更快,故引起梯度爆炸问题。
解决梯度消失和梯度爆炸问题,常用的有以下几个方案:
循环神经网络(recurrent neural network, RNN), 主要应用在语音识别、语言模型、机器翻译以及时序分析等问题上。在经典应用中,卷积神经网络在不同的空间位置共享参数,循环神经网络是在不同的时间位置共享参数,从而能够使用有限的参数处理任意长度的序列。RNN可以看做作是同一神经网络结构在时间序列上被复制多次的结果,这个被复制多次的结构称为循环体,如何设计循环体的网络结构是RNN解决实际问题的关键。 RNN的输入有两个部分,一部分为上一时刻的状态,另一部分为当前时刻的输入样本。
训练过程中模型不收敛,是否说明这个模型无效,致模型不收敛的原因有哪些?
不一定。导致模型不收敛的原因有很多种可能,常见的有以下几种:
平滑处理(smoothing)也称模糊处理(bluring),主要用于消除图像中的噪声部分,平滑处理常用的用途是用来减少图像上的噪点或失真,平滑主要使用图像滤波。在这里,我个人认为可以把图像平滑和图像滤波联系起来,因为图像平滑常用的方法就是图像滤波器。 在OpenCV3中常用的图像滤波器有以下几种:
(1). 减少网络层参数。用两个33卷积比用1个55卷积拥有更少的参数量,只有后者的2∗3∗35∗5=0.72。但是起到的效果是一样的,两个33的卷积层串联相当于一个55的卷积层,感受野的大小都是5×5,即1个像素会跟周围5*5的像素产生关联。
(2). 更多的非线性变换。2个33卷积层拥有比1个55卷积层更多的非线性变换(前者可以使用两次ReLU激活函数,而后者只有一次),使得卷积神经网络对特征的学习能力更强。
paper中给出的相关解释:三个这样的层具有7×7的有效感受野。那么我们获得了什么?例如通过使用三个3×3卷积层的堆叠来替换单个7×7层。首先,我们结合了三个非线性修正层,而不是单一的,这使得决策函数更具判别性。其次,我们减少参数的数量:假设三层3×3卷积堆叠的输入和输出有C个通道,堆叠卷积层的参数为3(32C2)=27C2个权重;同时,单个7×7卷积层将需要72C2=49C2个参数,即参数多81%。这可以看作是对7×7卷积滤波器进行正则化,迫使它们通过3×3滤波器(在它们之间注入非线性)进行分解。
此回答可以参考TensorFlow实战p110,网上很多回答都说的不全。
ReLU激活函数公式如下:
relu函数方程 ReLU 的输出要么是 0, 要么是输入本身。虽然方程简单,但实际上效果更好。在网上看了很多版本的解释,有从程序实例分析也有从数学上分析,我找了个相对比较直白的回答,如下: (1). ReLU函数计算简单,可以减少很多计算量。反向传播求误差梯度时,涉及除法,计算量相对较大,采用ReLU激活函数,可以节省很多计算量; (2). 避免梯度消失问题。对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失问题(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。 (3). 可以缓解过拟合问题的发生。Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。
https://www.twblogs.net/a/5c2dd30fbd9eee35b21c4337/zh-cn
权值(权重)共享这个词是由LeNet5模型提出来的。以CNN为例,在对一张图偏进行卷积的过程中,使用的是同一个卷积核的参数。 比如一个3×3×1的卷积核,这个卷积核内9个的参数被整张图共享,而不会因为图像内位置的不同而改变卷积核内的权系数。说的再直白一些,就是用一个卷积核不改变其内权系数的情况下卷积处理整张图片(当然CNN中每一层不会只有一个卷积核的,这样说只是为了方便解释而已)。
https://blog.csdn.net/chaipp0607/article/details/73650759
使用预训练模型的好处,在于利用训练好的SOTA模型权重去做特征提取,可以节省我们训练模型和调参的时间。
至于为什么只微调最后几层神经网络权重,是因为: (1). CNN中更靠近底部的层(定义模型时先添加到模型中的层)编码的是更加通用的可复用特征,而更靠近顶部的层(最后添加到模型中的层)编码的是更专业业化的特征。微调这些更专业化的特征更加有用,它更代表了新数据集上的有用特征。 (2). 训练的参数越多,过拟合的风险越大。很多SOTA模型拥有超过千万的参数,在一个不大的数据集上训练这么多参数是有过拟合风险的,除非你的数据集像Imagenet那样大。
(15)什么是dropout?
dropout可以防止过拟合,dropout简单来说就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型的泛化性更强,因为它不会依赖某些局部的特征。
以 标准神经网络为例,正常的流程是:我们首先把输入数据x通过网络前向传播,然后把误差反向传播一决定如何更新参数让网络进行学习。使用dropout之后,过程变成如下:
(1). 首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(图3中虚线为部分临时被删除的神经元); (2). 然后把输入x通过修改后的网络进行前向传播计算,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b); (3). 然后重复这一过程:
(1). 在训练模型阶段
不可避免的,在训练网络中的每个单元都要添加一道概率流程,标准网络和带有dropout网络的比较图如下所示:
(2). 在测试模型阶段
预测模型的时候,输入是当前输入,每个神经单元的权重参数要乘以概率p。
input 的dropout概率推荐是0.8, hidden layer 推荐是0.5, 但是也可以在一定的区间上取值。(All dropout nets use p = 0.5 for hidden units and p = 0.8 for input units.)
知名的有TensorFlow Lite、小米MACE、腾讯的ncnn等,目前都没有用过。
和防止模型过拟合的方法类似,另外还有模型融合方法。
最后的“scale and shift”操作则是为了让因训练所需而“刻意”加入的BN能够有可能还原最初的输入。不加也可以。
(18)激活函数的作用
激活函数实现去线性化。神经元的结构的输出为所有输入的加权和,这导致神经网络是一个线性模型。如果将每一个神经元(也就是神经网络的节点)的输出通过一个非线性函数,那么整个神经网络的模型也就不再是线性的了,这个非线性函数就是激活函数。 常见的激活函数有:ReLU函数、sigmoid函数、tanh函数。
假设输入层矩阵维度是96963,第一层卷积层使用尺寸为55、深度为16的过滤器(卷积核尺寸为55、卷积核数量为16),那么这层卷积层的参数个数为553*16+16=1216个。
本文分享自 机器学习与python集中营 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!