前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >用强化学习从视频中学习生成动作动画

用强化学习从视频中学习生成动作动画

作者头像
xcigar
发布于 2019-02-01 02:35:26
发布于 2019-02-01 02:35:26
1.1K0
举报
文章被收录于专栏:Right things in AIRight things in AI

原文blog:https://bair.berkeley.edu/blog/2018/10/09/sfv/

Paper:https://xbpeng.github.io/projects/SFV/2018_TOG_SFV.pdf

https://xbpeng.github.io/projects/SFV/index.html

摘要:

Data-driven character animation based on motion capture can produce highly naturalistic behaviors and, when combined with physics simulation, can provide for natural procedural responses to physical perturbations, environmental changes, and morphological discrepancies. Motion capture remains the most popular source of motion data, but collecting mocap data typically requires heavily instrumented environments and actors. In this paper, we propose a method that enables physically simulated characters to learn skills from videos (SFV). Our approach, based on deep pose estimation and deep reinforcement learning, allows data-driven animation to leverage the abundance of publicly available video clips from the web, such as those from YouTube. This has the potential to enable fast and easy design of character controllers simply by querying for video recordings of the desired behavior. The resulting controllers are robust to perturbations, can be adapted to new settings, can perform basic object interactions, and can be retargeted to new morphologies via reinforcement learning. We further demonstrate that our method can predict potential human motions from still images, by forward simulation of learned controllers initialized from the observed pose. Our framework is able to learn a broad range of dynamic skills, including locomotion, acrobatics, and martial arts.

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
柔性机械臂:动力学建模具体方法
建立柔性机械臂动力学方程主要利用Newton-Euler和Lagrange方程这两个最具代表性的方程,另外比较常用的还有Kane方法等。为了建立动力学模型和控制的方便,柔性关节一般简化为弹簧。当连杆存在柔性时,常采用假设模态法、有限元法、有限段法等方法描述相应臂杆的柔性变形,然后再根据需要进行截断。柔性臂杆的变形常常简化为Euler-Bernulli梁来处理,即考虑到机械臂连杆的长度总比其截面尺寸大得多,运行过程中所产生的轴向变形和剪切变形相对于挠曲变形而言非常小,柔性臂杆只考虑挠曲变形,忽略轴向变形和剪切变形。因而从动力学角度看,每根柔性连杆都可视为一段梁。
ZC_Robot机器人技术
2020/10/03
4.7K22
柔性机械臂:动力学建模具体方法
Robot-走近机器人动力学建模与仿真
云机器人就是云计算与机器人学的结合。而机器人则是云机器人的主要终端,云可以为机器人提供数据监控以及分析服务,同时也可从远端遥操作机器人的动作。腾讯云社区为大家了解和使用腾讯云服务提供了优秀的平台。而对于机器人部分,下面给出关于机器人关键技术之一的动力学建模与仿真的介绍。
ZC_Robot机器人技术
2020/05/09
14.8K2
Robot-走近机器人动力学建模与仿真
柔性机器人动力学方程
机械臂的动力学在机械臂的控制中具有十分重要的意义,建立机械臂的动力学模型,是描述控制系统的依据,也是设计控制器的前提。机械臂动力学建模的常用方法是拉格朗日法和牛顿-欧拉法。采用牛顿-欧拉法建立机械臂动力学模型时,要计算每个部分加速度,然后消去内作用力,牛顿-欧拉法是解决动力学问题的力平衡方法。但是,当机械臂变得复杂,此方法的计算也将变得复杂。拉格朗日法依据的是能量平衡原理,不需要对内作用力进行求解。对于多自由度复杂度高的机械臂,拉格朗日法比牛顿-欧拉法的求解更适用。
ZC_Robot机器人技术
2021/03/07
4.8K6
柔性机器人动力学方程
【Dynamics】机械臂动力学建模(牛顿-欧拉法)
(1)动力学用于机械臂的仿真,机械臂的动力学有助于进行机械臂完成特定任务比如目标捕获、操作、抓取以及分拣等操作;仿真可以得到机械臂在完成此类任务过程中的动态特性;
ZC_Robot机器人技术
2020/06/25
11.8K0
【Dynamics】机械臂动力学建模(牛顿-欧拉法)
机器人动力学建模:机械臂动力学
多体系统动力学形成了多种建模和分析的方法, 早期的动力学研究主要包括 Newton-Euler 矢量力学方法和基于 Lagrange 方程的分析力学方法。 这种方法对于解决自由度较少的简单刚体系统, 其方程数目比较少, 计算量也比较小, 比较容易, 但是, 对于复杂的刚体系统, 随着自由度的增加, 方程数目 会急剧增加, 计算量增大。 随着时代的发展, 计算机技术得到了突飞猛进的进步, 虽然可以利用计算机编程求解出动力学方程组, 但是, 对于求解下一时刻的关节角速度需要合适的数值积分方法, 而且需要编写程序, 虽然这种方法可以求解出方程的解, 但是, 由于这种编程方法不具有通用性, 针对每个具体问题, 都需要编程求解, 效率比较低, 因此, 如果能在动力学建模的同时就考虑其计算问题, 并且在建模过程中考虑其建模和求解的通用性, 就能较好的解决此问题。
ZC_Robot机器人技术
2020/10/15
8.7K1
机器人动力学建模:机械臂动力学
柔性机械臂:控制算法介绍
建立的系统动力学模型必须按照控制的要求进行简化以便为控制系统的设计提供设计模型。大致可以划分为被动控制和主动控制两大类。
ZC_Robot机器人技术
2020/09/28
6.4K4
柔性机械臂:控制算法介绍
【Dynamics】SimMechanics在机器人动力学建模中的应用
Matlab中有关于机械系统动力学仿真分析的软件SimMechanics,SimMechanics是基于Simulink基础上的工具箱模块,其可以通过图形化建模的方法建立机械系统的动力学,并且由于其是基于Simulink框架的动力学建模软件,因此可以通过与simulink的控制系统相关接口连接,从而达到仿真-控制一体化的分析。Matlab-Simulink-SimMechanics的架构对于机械系统的建模-仿真-控制具有重要的作用。
ZC_Robot机器人技术
2020/06/21
3.6K0
【Dynamics】SimMechanics在机器人动力学建模中的应用
自由漂浮机器人运动学和动力学建模
随着空间技术的不断发展和人类对空间探索的不断深入,空间机器人在完成诸如空间站的建造与维护等任务中发挥着重要的作用。
ZC_Robot机器人技术
2020/10/17
4.1K2
自由漂浮机器人运动学和动力学建模
组合体惯量法B:原理—机械臂动力学建模
对于多自由度机械臂, 为了研究机械臂的运动特性, 因此需要建立多自由度机械臂的半实物仿真系统以及全数值仿真系统, 而对其动力学的研究又是其中必不可少的环节之一。考虑到实时系统下, 计算机的运算速度以及数据通讯速度, 用于模拟机械臂运动的正向动力学需满足实时性、 快速性以及稳定性。 为此,有必要研究一种针对多自由度冗余机械臂的实时动力学用于模拟机械臂的实际运动情况。
ZC_Robot机器人技术
2020/09/23
4K2
组合体惯量法B:原理—机械臂动力学建模
机器人刚柔耦合动力学建模与应用汇总
柔性机器人轻量节能, 对环境和目 标的变化具有适应性, 但也存在因 为结构刚度较低而导致的结构振动的问题.现有的绝大多数机器人结构设计是结构刚度最大化, 以减小机器人结构的振动而实现精确的运动定位. 但是, 这种最大化刚度结构的机器人用材多、 不经济, 结构笨重不节能, 惯量大而动态性能差, 生产效率低. 况且, 不存在绝对的刚性结构, 一定条件的输入会激励出 一定频率的振动, 即使设计成最大化刚度结构, 机器人在高速重载的工作条件下同 样面临着结构振动的问 题.
ZC_Robot机器人技术
2020/11/17
4.1K0
机器人刚柔耦合动力学建模与应用汇总
机器人动力学:机械臂正向动力学与逆向动力学
正向动力学:已知机器人的关节驱动力矩和上一时刻的运动状态(角度和角速度),计算得到机器人下一时刻的运动加速度,再积分得到速度和角度;
ZC_Robot机器人技术
2020/10/16
23K1
机器人动力学:机械臂正向动力学与逆向动力学
Robot-adams机器人动力学仿真
机器人的动力学仿真软件有很多,在之前的文章中【Robot-走近机器人动力学建模与仿真】也有详细的分类介绍,在众多的机器人仿真软件中,Adams 是科学研究中关于动力学仿真求解最稳定的。这主要是由于adams 具有强大的动力学微分仿真求解器.本文旨在详细介绍adams在机器人研发领域内的应用。
ZC_Robot机器人技术
2020/06/16
8K9
Robot-adams机器人动力学仿真
组合体惯量法A: matlab程序—机械臂动力学建模
机械臂为典型的多体系统,针对机械臂的动力学建模可以采用传统的多刚体系统建模原理,但是针对机械臂,由于其一般为串行链结构,针对其特殊性,可以采用有别于传统动力学建模原理的特殊方法。机械臂的实时动力学按照计算原则不同分为单处理器串行计算以及多处理器并行计算方法,本文研究的为单处理器串行计算的机械臂实时动力学。
ZC_Robot机器人技术
2020/09/22
4.2K0
组合体惯量法A: matlab程序—机械臂动力学建模
基于空间矢量的机器人动力学建模与对比分析
普通的矢量属于3D矢量,即每个3D矢量是由空间的三个标量表示,举例来说,空间的某个位置矢量是由三个XYZ轴的标量值得到,空间的力矢量是力在XYZ轴的标量值合成,力矩也是三个标量合成。而在6D 空间矢量则是分为运动学量以及动力学量,具体为
ZC_Robot机器人技术
2020/09/19
3.2K9
基于空间矢量的机器人动力学建模与对比分析
基于matlab的机械臂仿真_移动机器人matlab运动学仿真
目的 本文手把手教你在 Mathematica 科学计算软件中搭建机器人的仿真环境,具体包括以下内容:    1 导入机械臂的三维模型    2 正\逆运动学仿真    3 碰撞检测    4 轨迹规划    5 正\逆动力学仿真    6 运动控制 文中的所有代码和模型文件都在此处:https://github.com/robinvista/Mathematica 。使用的软件版本是 Mathematica 11.1,较早的版本可能缺少某些函数,所以最好使用最新版。交流网站是www.robotattractor.com。进入正文之前不妨先看几个例子:
全栈程序员站长
2022/11/01
5.1K0
基于matlab的机械臂仿真_移动机器人matlab运动学仿真
Robot:七自由度机械臂动力学建模与控制研究(一)
冗余构型机械臂的动力学与控制存在着其特殊性。七自由机械臂的动力学算法一般计算量大,且其控制中存在“自运动”问题。针对上述问题,本文主要研究内容包括:基于铰接体算法的空间机械臂正向动力学,冗余机械臂位置控制,基于增强混合阻抗控制的空间冗余机械臂力控制研究。
ZC_Robot机器人技术
2021/01/21
5.1K3
Robot:七自由度机械臂动力学建模与控制研究(一)
七自由度冗余机械臂梯度投影逆运动学
冗余机械臂的微分逆运动学一般可以增加额外的优化任务。 最常用的是梯度投影算法 GPM (Gradient Project Method),文献 [1] 中第一次将梯度投影法应用于关节极限位置限位中。 该算法中设计基于关节极限位置的优化指标, 并在主任务的零空间中完成任务优化。 此种思想也用于机械臂的奇异等指标优化中。 Colome 等 对比分析了速度级微分逆向运动学中的关节极限位置指标优化问题, 但是其研究中的算法存在一定的累计误差, 因而系统的收敛性和算法的计算稳定性难以得到保证。 其他学者综合多种机器人逆向运动学方法, 衍生出二次计算方法、 梯度最小二乘以及模糊逻辑加权最小范数方法等算法。Flacco 等 针对七自 由度机械臂提出一种新的零空间任务饱和迭代算法, 当机械臂到达关节限位时, 关节空间利用主任务的冗余度进行构型调整, 从而使得机械臂回避极限位置。 近年来, 关于关节极限回避情况下的冗余机械臂运动规划成为了很多学者的研究方向, 相应的改进 策 略 也 很 多.
ZC_Robot机器人技术
2020/10/28
6.8K2
七自由度冗余机械臂梯度投影逆运动学
振型叠加法解动力学方程
振型叠加法解动力学方程 振型叠加法求解动力学方程由两个步骤组成:一是求解结构的固有频率和振型;二是求解结构的动力响应。本文重点讨论第二步。 对于结构的运动方程 引入坐标变换 式中, ,,, 称为广义位移。此变换的意义是将看成是的线性组合。从数学上看,是将位移从有限元系统的节点位移向量为基向量(物理坐标)的维空间转换到以为基向量(振型坐标)的维空间。 将代入,两边同时乘以,并考虑到关于刚度矩阵和质量矩阵的正交性,得到结构在以为基向量的维空间内的运动方程 其中 称为广义力。在两端同时左乘,并令,可将初始条件变换
fem178
2022/08/25
9650
Robot:七自由度机械臂动力学建模与控制研究(二)
为了有效的进行冗余机械臂位置控制,本文采用基于运动学的构型控制策略,选择臂角为构型控制中的运动学函数,以此参数化其“自运动”。为了检验算法的正确性,本文建立了空间七自由度机械臂的数值仿真系统,仿真结果表明,基于该算法可以有效控制冗余机械臂的运动。
ZC_Robot机器人技术
2021/01/21
4.4K0
Robot:七自由度机械臂动力学建模与控制研究(二)
机器人的动力学参数辨识A
为了辨识参数,采用“barycentric parameters”, 因此每个连杆的动力学参数分别为质量, , The first moment of inertia, ;
ZC_Robot机器人技术
2020/09/27
3.2K4
机器人的动力学参数辨识A
相关推荐
柔性机械臂:动力学建模具体方法
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档