Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习实战教程(十一):线性回归基础篇之预测鲍鱼年龄

机器学习实战教程(十一):线性回归基础篇之预测鲍鱼年龄

作者头像
圆方圆PYTHON学院
修改于 2019-01-17 02:09:27
修改于 2019-01-17 02:09:27
1.2K0
举报
文章被收录于专栏:Python学习心得Python学习心得

原文链接:https://cuijiahua.com/blog/2017/11/ml_11_regression_1.html

1.jpg
1.jpg

一、前言

前面的文章介绍了很多分类算法,分类的目标变量是标称型数据,而本文将会对连续型的数据做出预测。主要讲解简单的线性回归和局部加权线性回归,并通过预测鲍鱼年龄的实例进行实战演练。

二、什么是回归?

回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。假如你想预测小姐姐男友汽车的功率,可能会这么计算:

HorsePower = 0.0015 annualSalary - 0.99 hoursListeningToPublicRadio

写成中文就是:

小姐姐男友汽车的功率 = 0.0015 小姐姐男友年薪 - 0.99 收听公共广播的时间

这就是所谓的回归方程(regression equation),其中的0.0015和-0.99称为回归系数(regression weights),求这些回归系数的过程就是回归。一旦有了这些回归系数,再给定输入,做预测就非常容易了。具体的做法是用回归系数乘以输入值,再将结果全部加在一起,就得到了预测值。

说到回归,一般都是指线性回归(linear regression),所以本文里的回归和线性回归代表同一个意思。线性回归意味着可以将输入项分别乘以一些常量,再将结果加起来得到输出。需要说明的是,存在另一种成为非线性回归的回归模型,该模型不认同上面的做法,比如认为输出可能是输入的乘积。这样,上面的功率计算公式也可以写做:

HorsePower = 0.0015 * annualSalary / hoursListeningToPublicRadio

这就是一个非线性回归的例子,本文对此不做深入讨论。

三、揭开回归的神秘面纱

1、用线性回归找到最佳拟合直线

应该怎么从一大堆数据里求出回归方程呢?假定输入数据存放在矩阵X中,结果存放在向量y中:

2.png
2.png

而回归系数存放在向量w中:

3.png
3.png

那么对于给定的数据x1,即矩阵X的第一列数据,预测结果u1将会通过如下公式给出:

4.png
4.png

现在的问题是,手里有数据矩阵X和对应的标签向量y,怎么才能找到w呢?一个常用的方法就是找出使误差最小的w。这里的误差是指预测u值和真实y值之间的差值,使用该误差的简单累加将使得正差值和负差值相互抵消,所以我们采用平方误差。

平方误差和可以写做:

5.png
5.png

用矩阵表示还可以写做:

6.png
6.png

为啥能这么变化,记住一个前提:若x为向量,则默认x为列向量,x^T为行向量。将上述提到的数据矩阵X和标签向量y带进去,就知道为何这么变化了。

在继续推导之前,我们要先明确一个目的:找到w,使平方误差和最小。因为我们认为平方误差和越小,说明线性回归拟合效果越好。

现在,我们用矩阵表示的平方误差和对w进行求导:

7.png
7.png

如果对于矩阵求不熟悉的,可以移步这里:点击查看

令上述公式等于0,得到:

8.png
8.png

w上方的小标记表示,这是当前可以估计出的w的最优解。从现有数据上估计出的w可能并不是数据中的真实w值,所以这里使用了一个"帽"符号来表示它仅是w的一个最佳估计。

值得注意的是,上述公式中包含逆矩阵,也就是说,这个方程只在逆矩阵存在的时候使用,也即是这个矩阵是一个方阵,并且其行列式不为0。

述的最佳w求解是统计学中的常见问题,除了矩阵方法外还有很多其他方法可以解决。通过调用NumPy库里的矩阵方法,我们可以仅使用几行代码就完成所需功能。该方法也称作OLS, 意思是“普通小二乘法”(ordinary least squares)。

我们先看下数据集,数据下载地址:数据集下载

9.png
9.png

第一列都为1.0,即x0。第二列为x1,即x轴数据。第三列为x2,即y轴数据。首先绘制下数据,看下数据分布。编写代码如下:

代码语言:txt
AI代码解释
复制
# -*- coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
 
def loadDataSet(fileName):
    """
    函数说明:加载数据
    Parameters:
        fileName - 文件名
    Returns:
        xArr - x数据集
        yArr - y数据集
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
 
    numFeat = len(open(fileName).readline().split('\t')) - 1
    xArr = []; yArr = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        xArr.append(lineArr)
        yArr.append(float(curLine[-1]))
    return xArr, yArr
 
def plotDataSet():
    """
    函数说明:绘制数据集
    Parameters:
        无
    Returns:
        无
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    xArr, yArr = loadDataSet('ex0.txt')                                    #加载数据集
    n = len(xArr)                                                        #数据个数
    xcord = []; ycord = []                                                #样本点
    for i in range(n):                                                   
        xcord.append(xArr[i][1]); ycord.append(yArr[i])                    #样本点
    fig = plt.figure()
    ax = fig.add_subplot(111)                                            #添加subplot
    ax.scatter(xcord, ycord, s = 20, c = 'blue',alpha = .5)                #绘制样本点
    plt.title('DataSet')                                                #绘制title
    plt.xlabel('X')
    plt.show()
 
if __name__ == '__main__':
    plotDataSet()

运行代码如下:

10.png
10.png

通过可视化数据,我们可以看到数据的分布情况。接下来,让我们根据上文中推导的回归系数计算方法,求出回归系数向量,并根据回归系数向量绘制回归曲线,编写代码如下:

代码语言:txt
AI代码解释
复制
# -*- coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
 
def loadDataSet(fileName):
    """
    函数说明:加载数据
    Parameters:
        fileName - 文件名
    Returns:
        xArr - x数据集
        yArr - y数据集
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    numFeat = len(open(fileName).readline().split('\t')) - 1
    xArr = []; yArr = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        xArr.append(lineArr)
        yArr.append(float(curLine[-1]))
    return xArr, yArr
 
def standRegres(xArr,yArr):
    """
    函数说明:计算回归系数w
    Parameters:
        xArr - x数据集
        yArr - y数据集
    Returns:
        ws - 回归系数
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    xMat = np.mat(xArr); yMat = np.mat(yArr).T
    xTx = xMat.T * xMat                            #根据文中推导的公示计算回归系数
    if np.linalg.det(xTx) == 0.0:
        print("矩阵为奇异矩阵,不能求逆")
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws
 
def plotRegression():
    """
    函数说明:绘制回归曲线和数据点
    Parameters:
        无
    Returns:
        无
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    xArr, yArr = loadDataSet('ex0.txt')                                    #加载数据集
    ws = standRegres(xArr, yArr)                                        #计算回归系数
    xMat = np.mat(xArr)                                                    #创建xMat矩阵
    yMat = np.mat(yArr)                                                    #创建yMat矩阵
    xCopy = xMat.copy()                                                    #深拷贝xMat矩阵
    xCopy.sort(0)                                                        #排序
    yHat = xCopy * ws                                                     #计算对应的y值
    fig = plt.figure()
    ax = fig.add_subplot(111)                                            #添加subplot
    ax.plot(xCopy[:, 1], yHat, c = 'red')                                #绘制回归曲线
    ax.scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue',alpha = .5)                #绘制样本点
    plt.title('DataSet')                                                #绘制title
    plt.xlabel('X')
    plt.show()
 
if __name__ == '__main__':
    plotRegression()

运行代码如下:

11.png
11.png

如何判断拟合曲线的拟合效果的如何呢?当然,我们可以根据自己的经验进行观察,除此之外,我们还可以使用corrcoef方法,来比较预测值和真实值的相关性。编写代码如下:

代码语言:txt
AI代码解释
复制
# -*- coding:utf-8 -*-
import numpy as np
 
def loadDataSet(fileName):
    """
    函数说明:加载数据
    Parameters:
        fileName - 文件名
    Returns:
        xArr - x数据集
        yArr - y数据集
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    numFeat = len(open(fileName).readline().split('\t')) - 1
    xArr = []; yArr = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        xArr.append(lineArr)
        yArr.append(float(curLine[-1]))
    return xArr, yArr
 
def standRegres(xArr,yArr):
    """
    函数说明:计算回归系数w
    Parameters:
        xArr - x数据集
        yArr - y数据集
    Returns:
        ws - 回归系数
    Website:
        https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    xMat = np.mat(xArr); yMat = np.mat(yArr).T
    xTx = xMat.T * xMat                            #根据文中推导的公示计算回归系数
    if np.linalg.det(xTx) == 0.0:
        print("矩阵为奇异矩阵,不能求逆")
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws
 
if __name__ == '__main__':
    xArr, yArr = loadDataSet('ex0.txt')                                    #加载数据集
    ws = standRegres(xArr, yArr)                                        #计算回归系数
    xMat = np.mat(xArr)                                                    #创建xMat矩阵
    yMat = np.mat(yArr)                                                    #创建yMat矩阵
    yHat = xMat * ws
    print(np.corrcoef(yHat.T, yMat))

运行结果如下:

12.png
12.png

可以看到,对角线上的数据是1.0,因为yMat和自己的匹配是完美的,而YHat和yMat的相关系数为0.98。

最佳拟合直线方法将数据视为直线进行建模,具有十分不错的表现。数据当中似乎还存在其他的潜在模式。那么如何才能利用这些模式呢?我们可以根据数据来局部调整预测,下面就会介绍这种方法。

2、局部加权线性回归

线性回归的一个问题是有可能出现欠拟合现象,因为它求的是具有小均方误差的无偏估 计。显而易见,如果模型欠拟合将不能取得好的预测效果。所以有些方法允许在估计中引入一 些偏差,从而降低预测的均方误差。

其中的一个方法是局部加权线性回归(Locally Weighted Linear Regression,LWLR)。在该方法中,我们给待预测点附近的每个点赋予一定的权重。与kNN一样,这种算法每次预测均需要事先选取出对应的数据子集。该算法解除回归系数W的形式如下:

13.png
13.png

其中W是一个矩阵,这个公式跟我们上面推导的公式的区别就在于W,它用来给每个店赋予权重。

LWLR使用"核"(与支持向量机中的核类似)来对附近的点赋予更高的权重。核的类型可以自由选择,最常用的核就是高斯核,高斯核对应的权重如下:

14.jpg
14.jpg

这样我们就可以根据上述公式,编写局部加权线性回归,我们通过改变k的值,可以调节回归效果,编写代码如下:

代码语言:txt
AI代码解释
复制
# -*- coding:utf-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import numpy as np
def loadDataSet(fileName):
    """
    函数说明:加载数据
    Parameters:
        fileName - 文件名
    Returns:
        xArr - x数据集
        yArr - y数据集
    Website:https://www.cuijiahua.com/
    Modify:
        2017-11-12
    """
    numFeat = len(open(fileName).readline().split('\t')) - 1
    xArr = []; yArr = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        xArr.append(lineArr)
        yArr.append(float(curLine[-1]))
    return xArr, yArr
 
def plotlwlrRegression():
    """
    函数说明:绘制多条局部加权回归曲线
    Parameters:
        无
    Returns:
        无
    Website:https://www.cuijiahua.com/
    Modify:
        2017-11-15
    """
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    xArr, yArr = loadDataSet('ex0.txt')                                    #加载数据集
    yHat_1 = lwlrTest(xArr, xArr, yArr, 1.0)                            #根据局部加权线性回归计算yHat
    yHat_2 = lwlrTest(xArr, xArr, yArr, 0.01)                            #根据局部加权线性回归计算yHat
    yHat_3 = lwlrTest(xArr, xArr, yArr, 0.003)                            #根据局部加权线性回归计算yHat
    xMat = np.mat(xArr)                                                    #创建xMat矩阵
    yMat = np.mat(yArr)                                                    #创建yMat矩阵
    srtInd = xMat[:, 1].argsort(0)                                        #排序,返回索引值
    xSort = xMat[srtInd][:,0,:]
    fig, axs = plt.subplots(nrows=3, ncols=1,sharex=False, sharey=False, figsize=(10,8))                                        
    axs[0].plot(xSort[:, 1], yHat_1[srtInd], c = 'red')                        #绘制回归曲线
    axs[1].plot(xSort[:, 1], yHat_2[srtInd], c = 'red')                        #绘制回归曲线
    axs[2].plot(xSort[:, 1], yHat_3[srtInd], c = 'red')                        #绘制回归曲线
    axs[0].scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue', alpha = .5)                #绘制样本点
    axs[1].scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue', alpha = .5)                #绘制样本点
    axs[2].scatter(xMat[:,1].flatten().A[0], yMat.flatten().A[0], s = 20, c = 'blue', alpha = .5)                #绘制样本点
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0].set_title(u'局部加权回归曲线,k=1.0',FontProperties=font)
    axs1_title_text = axs[1].set_title(u'局部加权回归曲线,k=0.01',FontProperties=font)
    axs2_title_text = axs[2].set_title(u'局部加权回归曲线,k=0.003',FontProperties=font)
    plt.setp(axs0_title_text, size=8, weight='bold', color='red')  
    plt.setp(axs1_title_text, size=8, weight='bold', color='red')  
    plt.setp(axs2_title_text, size=8, weight='bold', color='red')  
    plt.xlabel('X')
    plt.show()
def lwlr(testPoint, xArr, yArr, k = 1.0):
    """
    函数说明:使用局部加权线性回归计算回归系数w
    Parameters:
        testPoint - 测试样本点
        xArr - x数据集
        yArr - y数据集
        k - 高斯核的k,自定义参数
    Returns:
        ws - 回归系数
    Website:https://www.cuijiahua.com/
    Modify:
        2017-11-15
    """
    xMat = np.mat(xArr); yMat = np.mat(yArr).T
    m = np.shape(xMat)[0]
    weights = np.mat(np.eye((m)))                                        #创建权重对角矩阵
    for j in range(m):                                                  #遍历数据集计算每个样本的权重
        diffMat = testPoint - xMat[j, :]                                 
        weights[j, j] = np.exp(diffMat * diffMat.T/(-2.0 * k**2))
    xTx = xMat.T * (weights * xMat)                                        
    if np.linalg.det(xTx) == 0.0:
        print("矩阵为奇异矩阵,不能求逆")
        return
    ws = xTx.I * (xMat.T * (weights * yMat))                            #计算回归系数
    return testPoint * ws
def lwlrTest(testArr, xArr, yArr, k=1.0):  
    """
    函数说明:局部加权线性回归测试
    Parameters:
        testArr - 测试数据集
        xArr - x数据集
        yArr - y数据集
        k - 高斯核的k,自定义参数
    Returns:
        ws - 回归系数
    Website:
https://www.cuijiahua.com/
    Modify:
        2017-11-15
    """
    m = np.shape(testArr)[0]                                            #计算测试数据集大小
    yHat = np.zeros(m)    
    for i in range(m):                                                    #对每个样本点进行预测
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat
if __name__ == '__main__':
    plotlwlrRegression()

运行结果如下:

15.png
15.png

可以看到,当k越小,拟合效果越好。但是当k过小,会出现过拟合的情况,例如k等于0.003的时候。

四、预测鲍鱼的年龄

接下来,我们将回归用于真是数据。在abalone.txt文件中记录了鲍鱼(一种水生物→__→)的年龄,这个数据来自UCI数据集合的数据。鲍鱼年龄可以从鲍鱼壳的层数推算得到。

数据集下载地址:数据集下载(https://cuijiahua.com/wp-content/themes/begin/inc/go.php?url=https://github.com/Jack-Cherish/Machine-Learning/blob/master/Regression/abalone.txt

数据集的数据如下:

16.png
16.png

可以看到,数据集是多维的,所以我们很难画出它的分布情况。每个维度数据的代表的含义没有给出,不过没有关系,我们只要知道最后一列的数据是y值就可以了,最后一列代表的是鲍鱼的真实年龄,前面几列的数据是一些鲍鱼的特征,例如鲍鱼壳的层数等。我们不做数据清理,直接用上所有特征,测试下我们的局部加权回归。

新建abalone.py文件,添加rssError函数,用于评价最后回归结果。编写代码如下:

代码语言:txt
AI代码解释
复制
# -*- coding:utf-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import numpy as np
def loadDataSet(fileName):
    """
    函数说明:加载数据
    Parameters:
        fileName - 文件名
    Returns:
        xArr - x数据集
        yArr - y数据集
    Website:
https://www.cuijiahua.com/
    Modify:
        2017-11-19
    """
    numFeat = len(open(fileName).readline().split('\t')) - 1
    xArr = []; yArr = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        xArr.append(lineArr)
        yArr.append(float(curLine[-1]))
    return xArr, yArr
def lwlr(testPoint, xArr, yArr, k = 1.0):
    """
    函数说明:使用局部加权线性回归计算回归系数w
    Parameters:
        testPoint - 测试样本点
        xArr - x数据集
        yArr - y数据集
        k - 高斯核的k,自定义参数
    Returns:
        ws - 回归系数
    Website:
https://www.cuijiahua.com/
    Modify:
        2017-11-19
    """
    xMat = np.mat(xArr); yMat = np.mat(yArr).T
    m = np.shape(xMat)[0]
    weights = np.mat(np.eye((m)))                                        #创建权重对角矩阵
    for j in range(m):                                                  #遍历数据集计算每个样本的权重
        diffMat = testPoint - xMat[j, :]                                 
        weights[j, j] = np.exp(diffMat * diffMat.T/(-2.0 * k**2))
    xTx = xMat.T * (weights * xMat)                                        
    if np.linalg.det(xTx) == 0.0:
        print("矩阵为奇异矩阵,不能求逆")
        return
    ws = xTx.I * (xMat.T * (weights * yMat))                            #计算回归系数
    return testPoint * ws
def lwlrTest(testArr, xArr, yArr, k=1.0):  
    """
    函数说明:局部加权线性回归测试
    Parameters:
        testArr - 测试数据集,测试集
        xArr - x数据集,训练集
        yArr - y数据集,训练集
        k - 高斯核的k,自定义参数
    Returns:
        ws - 回归系数
    Website:
https://www.cuijiahua.com/
    Modify:
        2017-11-19
    """
    m = np.shape(testArr)[0]                                            #计算测试数据集大小
    yHat = np.zeros(m)    
    for i in range(m):                                                    #对每个样本点进行预测
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat
def standRegres(xArr,yArr):
    """
    函数说明:计算回归系数w
    Parameters:
        xArr - x数据集
        yArr - y数据集
    Returns:
        ws - 回归系数
    Website:
https://www.cuijiahua.com/
    Modify:
        2017-11-19
    """
    xMat = np.mat(xArr); yMat = np.mat(yArr).T
    xTx = xMat.T * xMat                            #根据文中推导的公示计算回归系数
    if np.linalg.det(xTx) == 0.0:
        print("矩阵为奇异矩阵,不能求逆")
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws
def rssError(yArr, yHatArr):
    """
    误差大小评价函数
    Parameters:
        yArr - 真实数据
        yHatArr - 预测数据
    Returns:
        误差大小
    """
    return ((yArr - yHatArr) **2).sum()
if __name__ == '__main__':
    abX, abY = loadDataSet('abalone.txt')
    print('训练集与测试集相同:局部加权线性回归,核k的大小对预测的影响:')
    yHat01 = lwlrTest(abX[0:99], abX[0:99], abY[0:99], 0.1)
    yHat1 = lwlrTest(abX[0:99], abX[0:99], abY[0:99], 1)
    yHat10 = lwlrTest(abX[0:99], abX[0:99], abY[0:99], 10)
    print('k=0.1时,误差大小为:',rssError(abY[0:99], yHat01.T))
    print('k=1  时,误差大小为:',rssError(abY[0:99], yHat1.T))
    print('k=10 时,误差大小为:',rssError(abY[0:99], yHat10.T))
    print('')
    print('训练集与测试集不同:局部加权线性回归,核k的大小是越小越好吗?更换数据集,测试结果如下:')
    yHat01 = lwlrTest(abX[100:199], abX[0:99], abY[0:99], 0.1)
    yHat1 = lwlrTest(abX[100:199], abX[0:99], abY[0:99], 1)
    yHat10 = lwlrTest(abX[100:199], abX[0:99], abY[0:99], 10)
    print('k=0.1时,误差大小为:',rssError(abY[100:199], yHat01.T))
    print('k=1  时,误差大小为:',rssError(abY[100:199], yHat1.T))
    print('k=10 时,误差大小为:',rssError(abY[100:199], yHat10.T))
    print('')
    print('训练集与测试集不同:简单的线性归回与k=1时的局部加权线性回归对比:')
    print('k=1时,误差大小为:', rssError(abY[100:199], yHat1.T))
    ws = standRegres(abX[0:99], abY[0:99])
    yHat = np.mat(abX[100:199]) * ws
    print('简单的线性回归误差大小:', rssError(abY[100:199], yHat.T.A))

运行结果如下:

17.png
17.png

可以看到,当k=0.1时,训练集误差小,但是应用于新的数据集之后,误差反而变大了。这就是经常说道的过拟合现象。我们训练的模型,我们要保证测试集准确率高,这样训练出的模型才可以应用于新的数据,也就是要加强模型的普适性。可以看到,当k=1时,局部加权线性回归和简单的线性回归得到的效果差不多。这也表明一点,必须在未知数据上比较效果才能选取到最佳模型。那么最佳的核大小是10吗?或许是,但如果想得到更好的效果,应该用10个不同的样本集做10次测试来比较结果。

本示例展示了如何使用局部加权线性回归来构建模型,可以得到比普通线性回归更好的效果。局部加权线性回归的问题在于,每次必须在整个数据集上运行。也就是说为了做出预测,必须保存所有的训练数据。

五、总结

  • 本文主要介绍了简单的线性回归和局部加权线性回归。
  • 训练的模型要在测试集比较它们的效果,而不是在训练集上。
  • 在局部加权线性回归中,过小的核可能导致过拟合现象,即训练集表现良好,测试集表现就渣渣了。
  • 下篇文章将继续讲解回归,会介绍另一种提高预测精度的方法。
  • 如有问题,请留言。如有错误,还望指正,谢谢!

PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、赞!

本文出现的所有代码和数据集,均可在我的github上下载,欢迎Follow、Star:点击查看

参考资料:


相关文章和视频推荐

圆方圆学院汇集 Python + AI 名师,打造精品的 Python + AI 技术课程。 在各大平台都长期有优质免费公开课及录像,欢迎报名收看。

公开课地址:https://ke.qq.com/course/362788?flowToken=1007319

加入python学习讨论群 78486745,获取资料,和广大群友一起学习。

python群.png
python群.png

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Python3《机器学习实战》学习笔记(十一):线性回归基础篇之预测鲍鱼年龄
版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.com。 https://blog.csdn.net/c406495762/article/details/78760239
Jack_Cui
2019/05/25
7910
【机器学习笔记】:大话线性回归(一)
线性回归作为监督学习中经典的回归模型之一,是初学者入门非常好的开始。宏观上考虑理解性的概念,我想我们在初中可能就接触过,y=ax,x为自变量,y为因变量,a为系数也是斜率。如果我们知道了a系数,那么给我一个x,我就能得到一个y,由此可以很好地为未知的x值预测相应的y值。这很符合我们正常逻辑,不难理解。那统计学中的线性回归是如何解释的呢?
Python数据科学
2018/12/05
1.4K0
机器学习实战---线性回归提高篇之乐高玩具套件二手价预测
作者:崔家华 编辑:王抒伟 PS(欢迎访问作者个人网站:www.cuijiahua.com) 线性回归 零 前言: 本篇文章讲解线性回归的缩减方法,岭回归以及逐步线性回归,同时熟悉sklearn的岭回归使用方法,对乐高玩具套件的二手价格做出预测。 一 岭回归: 如果数据的特征比样本点还多应该怎么办?很显然,此时我们不能再使用上文的方法进行计算了,因为矩阵X不是满秩矩阵,非满秩矩阵在求逆时会出现问题。为了解决这个问题,统计学家引入岭回归(ridge regression)的概念。 1、岭回归是啥子? 岭回归
机器学习算法工程师
2018/03/06
1.8K0
机器学习实战---线性回归提高篇之乐高玩具套件二手价预测
Python3《机器学习实战》学习笔记(十二):线性回归提高篇之乐高玩具套件二手价预测
版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.com。 https://blog.csdn.net/c406495762/article/details/82967529
Jack_Cui
2019/05/25
7480
局部加权线性回归(LWLR)
线性回归的一个问题是很可能出现欠拟合现象。局部加权线性回归可以解决线性回归中的欠拟合现象。在该算法中,我们对更靠近待预测点的点赋予更高的权重。权重类型可以自由选择,最常用的是使用高斯核:W是一个对角矩阵,其中第i项表达式为
用户6021899
2019/08/14
1.2K0
【线性回归】标准方程法
需要注意的是xArr中的第一项均为1,其实是偏置项的占位。我们要想可视化数据的分布,在读取数据的时候可以不用考虑:
西西嘛呦
2020/08/26
3170
【线性回归】标准方程法
局部加权线性回归 | 冰水数据智能专题 | 3rd
局部加权线性回归(Locally Weighted Linear Regression,LWLR),针对于线性回归存在的欠 拟合现象,可以引入一些偏差得到局部加权线性回归对算法进行优化。
用户7623498
2020/08/04
5330
局部加权线性回归  | 冰水数据智能专题 | 3rd
机器学习实战之线性回归
之前我们学习的机器学习算法都是属于分类算法,也就是预测值是离散值。当预测值为连续值时,就需要使用回归算法。本文将介绍线性回归的原理和代码实现。
罗罗攀
2018/06/24
5860
机器学习实战之线性回归
机器学习笔记——线性回归及其两种常用的优化方法
回归的目的是预测数值型的目标值,最直接的办法是依据输入写出一个目标值的计算公式,比如要计算一个男生可以找到女朋友的概率:
数据森麟
2020/05/27
2.5K0
机器学习笔记——线性回归及其两种常用的优化方法
线性回归与岭回归python代码实现
详细的推导可以参见:http://blog.csdn.net/weiyongle1996/article/details/73727505
py3study
2020/01/13
1.6K0
机器学习 学习笔记(5) 线性回归
给定数据集D={(x1,y1),(x2,y2),...,(xm,ym)},其中xi=(xi1;xi2;xi3;...;xid),yi是实数。线性回归试图学得一个线性模型以尽可能准确地预测实值输出标记。
2018/09/03
8810
机器学习 学习笔记(5) 线性回归
回归树/模型树及python代码实现
所谓回归就是数据进行曲线拟合,回归一般用来做预测,涵盖线性回归(经典最小二乘法)、局部加权线性回归、岭回归和逐步线性回归。先来看下线性回归,即经典最小二乘法,说到最小二乘法就不得说下线性代数,因为一般
机器学习AI算法工程
2018/03/12
3K0
回归树/模型树及python代码实现
利用回归模型预测数值型数据(代码)
机器学习算法按照目标变量的类型,分为标称型数据和连续型数据。标称型数据类似于标签型的数据,而对于它的预测方法称为分类,连续型数据类似于预测的结果为一定范围内的连续值,对于它的预测方法称为回归。 “回归”一词比较晦涩,下面说一下这个词的来源: “回归”一词是由达尔文的表兄弟Francis Galton发明的。Galton于1877年完成了第一次回归预测,目的是根据上一代豌豆种子(双亲)的尺寸来预测下一代豌豆种子(孩子)的尺寸。 Galton在大量对象上应用了回归分析,甚至包括人的身高预测。他注意到,如果双亲
机器学习AI算法工程
2018/03/14
1.9K0
利用回归模型预测数值型数据(代码)
机器学习15:线性回归模型
4.1,波士顿房价预测:线性回归(无正则化项)、Ridge回归(L2正则)、LASSO回归(L1正则)、Elasitc Net算法(L1和L2正则);
用户5473628
2019/08/08
8150
最小二乘法 线性回归
如何从一大堆数据里求出线性回归方程呢?假定输入数据存放在矩阵X中,而回归系数存放在向量w中。 那么对于给定的X,预测结果将会通过
用户6021899
2019/08/14
8390
机器学习实战之线性回归
之前我们学习的机器学习算法都是属于分类算法,也就是预测值是离散值。当预测值为连续值时,就需要使用回归算法。本文将介绍线性回归的原理和代码实现。 线性回归原理与推导 如图所示,这时一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的直线穿过这些散点(这些点离拟合直线很近)。 目标函数 要使这些点离拟合直线很近,我们需要用数学公式来表示。首先,我们要求的直线公式为:Y = XTw。我们这里要求的就是这个w向量(类似于logistic回归)。误差最小,也就是预测值y和真实值的y的
罗罗攀
2018/07/03
4890
机器学习(七)—回归
  摘要:本文分别介绍了线性回归、局部加权回归和岭回归,并使用python进行了简单实现。
oYabea
2020/09/07
4280
【机器学习实战】第8章 预测数值型数据:回归
片刻
2018/01/05
2K0
【机器学习实战】第8章 预测数值型数据:回归
岭回归(ridge regression)
当X不是列满秩矩阵时,即特征数n比样本数m还多,则X.T*X的行列式为0,逆不存在。或者X的某些列的线性相关比较大时,则X.T*X的行列式接近0,X.T*X为病态矩阵(接近于奇异),此时计算其逆矩阵误差会很大,传统的最小二乘法缺乏稳定性与可靠性。
用户6021899
2019/08/14
3.7K0
机器学习实战教程(十二):线性回归提高篇之乐高玩具套件二手价预测
原文链接:https://cuijiahua.com/blog/2017/12/ml_12_regression_2.html
圆方圆PYTHON学院
2019/01/30
9530
机器学习实战教程(十二):线性回归提高篇之乐高玩具套件二手价预测
相关推荐
Python3《机器学习实战》学习笔记(十一):线性回归基础篇之预测鲍鱼年龄
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档