首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

背包查找最大值

背包问题是一种组合优化问题,通常用于解决如何在一个给定容量的背包中放入物品,使得背包中物品的总价值最大。背包问题有很多变种,其中最常见的是0/1背包问题和完全背包问题。

0/1背包问题

在0/1背包问题中,每个物品只能选择一次。给定一组物品,每个物品有一个重量和一个价值,以及一个背包的最大承重。目标是选择一些物品放入背包,使得背包中物品的总价值最大,同时不超过背包的最大承重。

动态规划解法

可以使用动态规划来解决0/1背包问题。定义一个二维数组dp,其中dp[i][w]表示在前i个物品中选择,总重量不超过w的情况下,可以获得的最大价值。

状态转移方程为:

代码语言:javascript
复制
dp[i][w] = max(dp[i-1][w], dp[i-1][w-weight[i]] + value[i]) if weight[i] <= w
dp[i][w] = dp[i-1][w] if weight[i] > w

初始条件为:

代码语言:javascript
复制
dp[0][w] = 0 for all w
dp[i][0] = 0 for all i

最终答案为dp[n][W],其中n是物品的数量,W是背包的最大承重。

完全背包问题

在完全背包问题中,每个物品可以选择无限次。目标同样是选择一些物品放入背包,使得背包中物品的总价值最大,同时不超过背包的最大承重。

动态规划解法

定义一个二维数组dp,其中dp[i][w]表示在前i个物品中选择,总重量不超过w的情况下,可以获得的最大价值。

状态转移方程为:

代码语言:javascript
复制
dp[i][w] = max(dp[i-1][w], dp[i][w-weight[i]] + value[i]) if weight[i] <= w
dp[i][w] = dp[i-1][w] if weight[i] > w

初始条件为:

代码语言:javascript
复制
dp[0][w] = 0 for all w
dp[i][0] = 0 for all i

最终答案为dp[n][W],其中n是物品的数量,W是背包的最大承重。

示例代码(Python)

以下是一个0/1背包问题的示例代码:

代码语言:javascript
复制
def knapsack_01(weights, values, max_weight):
    n = len(weights)
    dp = [[0] * (max_weight + 1) for _ in range(n + 1)]

    for i in range(1, n + 1):
        for w in range(1, max_weight + 1):
            if weights[i - 1] <= w:
                dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])
            else:
                dp[i][w] = dp[i - 1][w]

    return dp[n][max_weight]

weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
max_weight = 5
print(knapsack_01(weights, values, max_weight))  # 输出:7
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

背包问题详解(01背包,完全背包,多重背包,分组背包

状态转移方程:对于每个物品i,我们有两种选择:不放入背包,或者放入背包。...选择这两种情况的最大值作为f[i][j]的值。...循环遍历: 在01背包问题中,每个物品只能放一次进背包。...f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k),这个方程考虑了不选取当前物品和选取当前物品k次两种情况下的最大价值,并取这些情况的最大值更新...目标是选择一些物品放入背包,使得背包内物品的总体积不超过背包的容量,同时背包内物品的总价值尽可能大。 输入: 第一行输入包含两个整数N和V,分别代表物品组数和背包的容量。 接下来是N组数据。

75010
  • 查找二维数组的最大值及其位置

    查找二维数组的最大值及其位置-Java实现 例: 封装一类 MatrixLocation,查询二维数组中的最大值及其位置。...最大值用 double 类型的maxValue 存储,位置用 int 类型的 row 和 column 存储。封装执行主类,给定二维数组,输出最大值及其位置。封装执行主类。...这道题目就是一道简单的二维数组查找问题,遍历二维数组即可找到最大值。...方法不能其实有一些问题,它只能输出最大值在数组中第一次出现的位置,这是由于题目已经规定好了最大值的下标用int row、int column表示。...如果自己写的话,可以用另外的两个数组分别保存最大值的行下标与列下标,实现将最大值在数组中所有出现的位置都输出。

    2.2K20

    动态规划-背包问题(01背包、完全背包、多重背包)

    背包问题 0/1背包 原理 输出方案 例题HDU-2602 空间优化-滚动数组 完全背包 转换为0/1背包 二维 一维 例题HDU-2159 多重背包 转换为0/1背包 二进制拆分优化 例题HDU...背包问题无法用贪心求最优解,是典型的动态规划问题。背包问题还可以分成3种:① 0-1背包、② 完全背包、③ 多重背包。...区别 0/1背包 每种物品是一件 完全背包 每种物品是无限件 多重背包 每种物品是有限件 0/1背包 ---- 0/1背包顾名思义就是0和1两种状态,即每个物品装入和不装入背包这两种状态,如果不懂dp...我们取两者最大值,即dp[2][3]=max(3,6)=6。 后面的多余容量同理。 ?.../当前容量j小于物品i的重量,装不下 dp[i][j] = dp[i - 1][j]; else { //可以装,取不装和装的最大值

    12.9K53

    背包问题详解:01背包、完全背包、多重背包「建议收藏」

    01背包问题: 01背包问题描述:有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,每件物品数量只有一个,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和...原问题的解f[5][10]取上述两种情况中的最大值,即f[5][10] = max{f[4][10], (f[4][10-weight[a]+value[a]))}。...完全背包问题与01背包问题的区别在于每一件物品的数量都有无限个,而01背包每件物品数量只有一个。 问题解法其实和01背包问题一样,只是初始化的值和递推公式需要稍微变化一下。...多重背包和01背包、完全背包的区别:多重背包中每个物品的个数都是给定的,可能不是一个,绝对不是无限个。...,01背包中允许放入的物品有重复,即01背包中如果考虑要放入的物品的重量和价格相同,不影响最终的结果,因为我们可以考虑把多重背包问题中限制数目的物品拆分成单独的一件件物品,作为01背包问题考虑。

    60520

    背包九讲——多重背包问题

    背包问题第二讲——多重背包问题 背包问题是一类经典的组合优化问题,通常涉及在限定容量的背包中选择物品,以最大化某种价值或利益。...多重背包问题则是每个物品都是有限个,而不是只有一个。 多重背包问题 多重背包问题是背包问题的一种扩展,与0/1背包问题和分数背包问题有些不同。...解决多重背包问题的方法通常是在0/1背包问题的基础上进行一些调整。...]]之内,在其左侧,队头要出队 if(head<=tail)f[k]=max(g[k],g[q[head]]+(k-q[head])/v[i]*w[i]);//使用队头最大值更新...f,(k-q[head])/v[i]表示还能放入的物品个数 //f[k]通过前面的旧值g[q[head]]来更新,所以窗口在g数组上滑动,f[k]=窗口中最大值+还能放入物品的价值

    13610

    DP:背包问题----01背包问题

    背包问题 背包问题(Knapsack Problem)是一类经典的组合优化问题,在计算机科学和数学中有广泛应用。...目标:选择若干个物品放入背包,使得总重量不超过背包的容量 W ,并且总价值最大化。 背包问题的变体 0/1 背包问题:每个物品只能选择一次,即要么选中(1)要么不选(0)。...分数背包问题:每个物品可以分割,即可以选择物品的一部分。 多重背包问题:每个物品有多个副本,可以选择多个相同的物品。 多维背包问题:背包有多个限制条件,例如容量和体积等。...解决背包问题的方法 解决背包问题的方法有很多,包括动态规划、分支定界法、贪心算法(适用于分数背包问题)以及各种近似算法和启发式算法等。...解决背包问题的一般步骤? 背包问题是一个经典的优化问题,可以通过动态规划算法来解决。下面是解决背包问题的一般步骤: 确定问题的约束条件:背包的容量限制和物品的重量和价值。

    11310

    初谈背包问题——01背包

    背包问题第一讲——01背包问题 背包问题是一类经典的组合优化问题,通常涉及在限定容量的背包中选择物品,以最大化某种价值或利益。...这个问题有两个主要变体:0/1背包问题和分数背包问题。 0/1 背包问题: 01背包问题是背包问题的的第一讲,也是动态规划问题的经典问题。...在学习背包问题时首要学习的时01背包问题,其剩余的八讲背包都是在01背包的变体,从它这里延伸出来的,所以在学习背包问题时,01背包问题是基础之基础,务必要学会01背包问题。下面我们将对其进行介绍。...接下来我将会给大家讲解背包九讲问题,分别为:01背包、多重背包、完全背包、混合背包、二位费用背包、分组背包、有依赖的背包、树形背包进行一一介绍,最后写一篇背包dp求方案数和具体方案的问题,并且介绍它们的优化解法...i号物品前面的物品 //如果你选了i号物品,那么你的背包容量将减少w[i],剩余j-w[i]供你选择i号物品前面的物品 //因为是最优解问题,要寻找最大值,到底是选了

    12110

    背包九讲——完全背包

    完全背包是01背包的加强版,先来看看《背包问题九讲》里是怎么描述这个问题的: 题目 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。...求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。...---- 所属专栏:戳我访问 再来看看《背包问题九讲》是怎么解决这个问题的: 基本思路 这个问题非常类似于01背包问题,所不同的是每种物品有无限件。...如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。...将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

    28600

    01背包及其变种(物品无限背包、恰好装满背包)

    一、01背包问题   01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解将那些物品装入背包可使总价值最大。  ...设物品件数为N,背包容量为V,第i件物品体积为C[i],第i件物品价值为W[i]。...将01背包一维数组解法中j的遍历顺序do for k←V to C[i]改为do for k←C[i] to V就变成了物品无限背包的解法。...物品无限背包问题具体例子:先输入两个数n,V表示物品的个数和背包的容量,接下来输入n组数据代表n种物品,每组数据有两个值对应物品的体积和价值,每种物品有无限个,求在背包容量下能装物品最大价值,并求出最大价值下...01背包下恰好装满的例子:先输入两个数n,V表示物品的个数和背包的容量,接下来输入n组数据代表n种物品,每组数据有两个值对应物品的体积和价值,每种物品只有一个,求在背包恰好装满时物品最大价值,并求出最大价值下

    4.5K100

    LindCode 92 · 背包问题----01背包问题

    超时 结束条件:枚举到第一个物品时 返回值:返回枚举到当前物品时的最满状态 本级递归做什么:计算当前物品放与不放入背包的结果,选择两个结果中最满的一种状态 与背包问题||的思路很类似,这里就是把塞入物品的大小等同于它的价值...= cache.end()) return cache[{obj, cap}]; //下面计算当前对应第i个物品背包容量为j下,求解背包最满状态 //选 int sel = 0; //看能不能放的下...}]=Cap; //超过当前背包容量 if (cap < 0) return cache[{obj, cap}]=Cap - cap - Size[obj - 1]; //所有物品放入背包后...{ //当前物品不放入背包 int unsel = dp[i - 1][j]; //选择当前物品----前提是背包剩余容量能够放下这件物品 int sel = j...{ //当前物品不放入背包 int unsel = dp[(i - 1)&1][j]; //选择当前物品----前提是背包剩余容量能够放下这件物品 int sel

    56130

    背包问题九讲笔记_完全背包

    本文包含的内容: 问题描述 基本思路(直接扩展01背包的方程) 转换为01背包问题求解(直接利用01背包) O(VN)的算法 ——————————————— 1、问题描述...问题:在不超过背包容量的情况下,最多能获得多少价值或收益 举例:物品个数N = 3,背包容量为V = 5,则背包可以装下的最大价值为40. ———————————————- 2、基本思路(直接扩展01...背包的方程) 由于本问题类似于01背包问题,在01背包问题中,物品要么取,要么不取,而在完全背包中,物品可以取0件、取1件、取2件…直到背包放不下位置。...因此,可以直接在01背包的递推式中扩展得到。...———————————————- 3、转换为01背包问题求解(直接利用01背包) 思路 1、完全背包的物品可以取无限件,根据背包的总容量V和第i件物品的总重量Weight[i],可知,背包中最多装入

    68320

    【动态规划背包问题】多维背包问题

    前言 今天是我们讲解「动态规划专题」中的「背包问题」的第十四篇。 今天将学习「多维背包」,并完成一道相关练习题。 另外,我在文章结尾处列举了我所整理的关于背包问题的相关题目。...背包问题(目录) 01背包 : 背包问题 第一讲 【练习】01背包 : 背包问题 第二讲 【学习&练习】01背包 : 背包问题 第三讲 完全背包 : 背包问题 第四讲 【练习】完全背包 : 背包问题 第五讲...【练习】完全背包 : 背包问题 第六讲 【练习】完全背包 : 背包问题 第七讲 多重背包 : 背包问题 第八讲 多重背包(优化篇) 【上】多重背包(优化篇): 背包问题 第九讲 【下】多重背包(优化篇...): 背包问题 第十讲 混合背包 : 背包问题 第十一讲 分组背包 : 背包问题 第十二讲 【练习】分组背包 : 背包问题 第十三讲 多维背包 : 本篇 【练习】多维背包 树形背包 【练习篇】树形背包...背包求方案数 【练习】背包求方案数 背包求具体方案 【练习】背包求具体方案 泛化背包 【练习】泛化背包 最后 这是我们「刷穿 LeetCode」系列文章的第 No.474 篇,系列开始于 2021/01

    1.2K30

    动态规划:完全背包、多重背包

    求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。       多重背包:有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。...比较这两个题目以及上次谈到的0-1背包(想看0-1背包的请移步:0-1背包),会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。...状态方程为: 0-1背包和完全背包的不同:   从二维数组上区别0-1背包和完全背包也就是状态转移方程就差别在放第i中物品时,完全背包在选择放这个物品时,最优解是F[i][j-c[i]]+w[i]即画表格中同行的那一个...从一维数组上区别0-1背包和完全背包差别就在循环顺序上,0-1背包必须逆序,因为这样保证了不会重复选择已经选择的物品,而完全背包是顺序,顺序会覆盖以前的状态,所以存在选择多次的情况,也符合完全背包的题意...转化为01背包问题     转化为01背包求解:把第i种物品换成n[i]件01背包中的物品。

    76820

    背包九讲之完全背包详解

    pid=311 完全背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。...求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。...,输出装满背包背包内物品的最大价值总和。...如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。...如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

    91530
    领券