首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

给定一个离散分布,如何绘制cdf?

离散分布的CDF(Cumulative Distribution Function,累积分布函数)表示随机变量取值小于等于某个特定值的概率。绘制离散分布的CDF可以按照以下步骤进行:

  1. 首先,确定离散分布的概率质量函数(PMF,Probability Mass Function)。概率质量函数给出了每个可能取值的概率。
  2. 计算每个可能取值的累积概率。累积概率是指随机变量取值小于等于某个特定值的概率。
  3. 绘制CDF曲线。横轴表示随机变量的取值,纵轴表示累积概率。对于每个可能取值,将其对应的累积概率作为纵坐标,绘制离散的CDF曲线。

以下是一个示例,假设有一个离散分布的概率质量函数如下:

| 随机变量取值 | 概率 | |-------------|------| | 1 | 0.2 | | 2 | 0.3 | | 3 | 0.1 | | 4 | 0.4 |

计算累积概率:

| 随机变量取值 | 累积概率 | |-------------|---------| | 1 | 0.2 | | 2 | 0.5 | | 3 | 0.6 | | 4 | 1.0 |

绘制离散分布的CDF曲线:

代码语言:txt
复制
   1|    *
    |   * *
    |  *   *
    | *
    |*
    +-----------------
     1   2   3   4

在这个示例中,横轴表示随机变量的取值,纵轴表示累积概率。每个取值对应的累积概率用一个点表示,通过连接这些点,得到离散的CDF曲线。

对于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体的云计算品牌商,无法给出具体的推荐链接。但腾讯云作为一家知名的云计算服务提供商,提供了丰富的云计算产品和解决方案,可以通过腾讯云官方网站或搜索引擎进行查询,以获取相关产品和介绍信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

统计分布太难懂?Python+统计学轻松搞定4种常用分布

本文用Python统计模拟的方法,介绍四种常用的统计分布,包括离散分布:二项分布和泊松分布,以及连续分布(指数分布、正态分布),最后查看人群的身高和体重数据所符合的分布。...这是一个离散分布,所以使用概率质量函数(PMF)来表示k次成功的概率: 最常见的二项分布就是投硬币问题了,投n次硬币,正面朝上次数就满足该分布。...,这是一个连续分布,所以用质量密度函数表示: 比如上面等公交车的例子,两辆车到来的时间间隔,就符合指数分布。...我们查看身高和体重数据,看看他们是不是满足正态分布。 首先导入数据,并编写绘制PDF和CDF图的函数 plot_pdf_cdf(),便于重复使用。...)) # 设置画布尺寸 p1 = fig.add_subplot(121) # 添加第一个子图 # 绘制正态分布PDF曲线 std = data.std() mean

1.4K10

【编写环境二】python库scipy.stats各种分布函数生成、以及随机数生成【泊松分布、正态分布等】

1.泊松分布、正态分布等生成方法 1.1常见分布: stats连续型随机变量的公共方法: *离散分布的简单方法大多数与连续分布很类似,但是pdf被更换为密度函数pmf。...累积概率密度 plt.plot(data, stats.poisson.cdf(data, mu=5), label='cdf(mu=5)') # PMF 绘制泊松分布的概率密度函数 plt.plot...累积概率密度 plt.plot(data, stats.poisson.cdf(data, mu=15), label='cdf(mu=15)') # PMF 绘制泊松分布的概率密度函数 plt.plot...axes.unicode_minus']=False #显示负号X=np.arange(0,2,1)#[0,1) p=0.7#库里投三分命中率 pList=stats.bernoulli.pmf(X,p)#在离散分布中...), 参数说明:vline(x坐标值,y坐标最小值,y坐标最大值) 我们传入的X是一个数组,是给数组中的每个x坐标值绘制直线, 数值线y坐标最小值是0,y坐标最大值是对应的pList中的值''' plt.vlines

1.7K10
  • 用Python结合统计学知识进行数据探索分析

    本文用Python统计模拟的方法,介绍四种常用的统计分布,包括离散分布:二项分布和泊松分布,以及连续分布:指数分布和正态分布,最后查看人群的身高和体重数据所符合的分布。...这是一个离散分布,所以使用概率质量函数(PMF)来表示k次成功的概率: ? 最常见的二项分布就是投硬币问题了,投n次硬币,正面朝上次数就满足该分布。...泊松分布 泊松分布用于描述单位时间内随机事件发生次数的概率分布,它也是离散分布,其概率质量函数为: ?...首先导入数据,并编写绘制PDF和CDF图的函数 plot_pdf_cdf(),便于重复使用。...# 设置画布尺寸 p1 = fig.add_subplot(121) # 添加第一个子图 # 绘制正态分布PDF曲线 std = data.std() mean =

    1.2K20

    技术解析|如何绘制密度分布

    前言 在前几天对数据分析师与算法工程师进行岗位对比分析的文章中,我们使用了密度分布图和箱线图对薪资水平与学历对薪资的影响进行了分析,那么早起就对这两种图形的绘制方法进行解析,也借着这个机会讲一下我最喜欢的绘图包...:ggplot2 密度分布图 在频率分布直方图中,当样本容量充分放大时,图中的组距就会充分缩短,这时图中的阶梯折线就会演变成一条光滑的曲线,这条曲线就称为总体的密度分布曲线。...这条曲线排除了由于取样不同和测量不准所带来的误差,能够精确地反映总体的分布规律,密度分布图其实就是密度分布曲线的填充。 原文的的密度分布图的绘制软件为R,为啥不用Python?...研究了一圈绘制出来图形都不够好看 ? 那么具体怎么画呢?首先把数据整理成这样? ?...结束语 以上就是使用R绘制漂亮的密度分布图过程,我已将原始数据放在公众号后台回复招聘获取,感兴趣的读者可以利用原始数据自己使用python进行处理得到我们需要的数据格式再绘制,最后留一个问题,怎样绘制学历关于薪资的箱线图

    2.6K10

    在Python中使用逆变换方法生成随机变量

    在本文中,我将向您展示如何使用Python中的逆变换方法生成随机变量(包括离散和连续的情况)。 概念 给定随机变量U,其中U在(0,1)中均匀分布。...假设我们要生成随机变量X,其中累积分布函数(CDF)为 ? 逆变换方法的思想是通过如下使用其逆CDF从任何概率分布中生成一个随机数。 ? 对于离散随机变量,步骤略有不同。...假设我们想生成一个离散随机变量X的值,它具有一个概率质量函数(PMF) ? 为了生成X的值,需要生成一个随机变量U,U在(0,1)中均匀分布,并且定义 ?...假设我们要模拟一个随机变量X,该变量遵循均值λ(即X〜EXP(λ))的指数分布。我们知道指数分布的概率分布函数(PDF)是 ? CDF如下 ? 然后,我们可以使用以下的方法写出逆CDF ?...离散随机数实现代码 对于离散随机变量情况,假设我们要模拟遵循以下分布离散随机变量情况X ? 首先,我们编写函数以使用这些代码行为一个样本生成离散随机变量。

    1.4K20

    统计学小抄:常用术语和基本概念小结

    数值数据又分为离散和连续两类数值变量。 I) 离散数值变量——离散变量的概念是指具有有限取值范围的变量,例如教室中的排名、系中教授的数量等。...偏态 偏度是对分布对称性的一种度量,可以用直方图(KDE)来绘制,它在数据众数方面有一个高峰。偏度一般分为左偏数据和右偏数据两种。有些人也把它理解为三种类型,第三种是对称分布,即正态分布。...一、数据右偏(正偏分布) 右偏态分布是指数据有一个向右的长尾(正轴)。右偏的一个经典例子是财富分配,很少人拥有很高的财富大多数人处于中等范围。...二、数据左偏(负偏分布) 左偏态分布是指数据有一个长尾朝向左侧(负轴)。一个例子可以是学生的成绩,将会有更少的学生得到更少的成绩,最大的学生将会在及格类别。...如何计算PDF和CDF 我们将计算setosa的PDF和CDF。我们将花瓣长度转换为10个分箱,并提取每个箱的样本数和边缘值,这些边缘表示容器的起点和终点。

    79010

    统计学小抄:常用术语和基本概念小结

    数值数据又分为离散和连续两类数值变量。 I) 离散数值变量——离散变量的概念是指具有有限取值范围的变量,例如教室中的排名、系中教授的数量等。...偏态 偏度是对分布对称性的一种度量,可以用直方图(KDE)来绘制,它在数据众数方面有一个高峰。偏度一般分为左偏数据和右偏数据两种。有些人也把它理解为三种类型,第三种是对称分布,即正态分布。...一、数据右偏(正偏分布) 右偏态分布是指数据有一个向右的长尾(正轴)。右偏的一个经典例子是财富分配,很少人拥有很高的财富大多数人处于中等范围。...二、数据左偏(负偏分布) 左偏态分布是指数据有一个长尾朝向左侧(负轴)。一个例子可以是学生的成绩,将会有更少的学生得到更少的成绩,最大的学生将会在及格类别。...如何计算PDF和CDF 我们将计算setosa的PDF和CDF。我们将花瓣长度转换为10个分箱,并提取每个箱的样本数和边缘值,这些边缘表示容器的起点和终点。

    79010

    用Python结合统计学知识进行数据探索分析

    本文用Python统计模拟的方法,介绍四种常用的统计分布,包括离散分布:二项分布和泊松分布,以及连续分布:指数分布和正态分布,最后查看人群的身高和体重数据所符合的分布。...这是一个离散分布,所以使用概率质量函数(PMF)来表示k次成功的概率: 最常见的二项分布就是投硬币问题了,投n次硬币,正面朝上次数就满足该分布。...泊松分布 泊松分布用于描述单位时间内随机事件发生次数的概率分布,它也是离散分布,其概率质量函数为: 比如你在等公交车,假设这些公交车的到来是独立且随机的(当然这不是现实),前后车之间没有关系,那么在1小时中到来的公交车数量就符合泊松分布...,这是一个连续分布,所以用质量密度函数表示: 比如上面等公交车的例子,两辆车到来的时间间隔,就符合指数分布。...首先导入数据,并编写绘制PDF和CDF图的函数 plot_pdf_cdf(),便于重复使用。

    1.5K70

    累积分布函数和直方图哪个更好?

    然后将每个 bin 内数字的绝对或相对计数绘制为相应间隔的条形图。上一个示例的结果可能如下图所示: 另一方面,在累积分布函数 (CDF) 中,已排序数字的百分比或相对计数绘制在数字本身上。...可以在 CDF 开始并碰到 x 轴的点处看到最小值。在 CDF 到达线y=1并结束的地方可以看到最大值。百分位数和分位数也可以直接从x轴读取。 给定数字集中的每个值都是 CDF 中的某个点。...另一方面,如果不仅绘制了经验分布函数本身,还绘制了预期分布类型的 CDF(比较下图中正态分布的红线),则可以直接应用 Kolmogorov Smirnov 检验。...但是只需很少的部分,也可以在 CDF 中清楚地看到集群。一个人只需要寻找下降的斜率,之后梯度会再次增加。下图中可以看到一个示例,它依赖于与上面的直方图相同的数字。...几个数据集的比较 CDF 比直方图更适合比较多个数据集。可以将任意数量的 CDF 绘制到相同的轴上,而不会出现任何比较问题。因此,每个集合实际包含多少数据无关紧要。

    16010

    概率论05 离散分布

    我们已经知道什么是离散随机变量。离散随机变量只能取有限的数个离散值,比如投掷一个撒子出现的点数为随机变量,可以取1,2,3,4,5,6。每个值对应有发生的概率,构成该离散随机变量的概率分布。...上面,我们创建了一个[$p=0.8$]的伯努利随机变量,并计算该随机变量在不同点的累积分布函数(CDF)。...二项分布 为了理解二项分布如何出现的,我们假设下面情况:进行n次独立测试,每次测试成功的概率为p(相应的,失败的概率为1-p)。这n次测试中的“成功次数”是一个随机变量。...绘制随机变量k的概率分布。...练习: 推导超几何分布的概率质量函数,并绘制其概率分布。 总结 离散随机变量比较直观,容易理解。我们在这里介绍了一些经典分布,即随机变量取值的概率。

    62530

    python 计算概率密度、累计分布、逆函数的例子

    计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个: pdf:连续随机分布的概率密度函数 pmf:离散随机分布的概率密度函数 cdf:累计分布函数 百分位函数(累计分布函数的逆函数...) 生存函数的逆函数(1 – cdf 的逆函数) 函数里面不仅能跟一个数据,还能跟一个数组。...目标: 已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1 步骤(具体解释后面会说)...: 1、根据pdf得到cdf 2、由cdf得到inverse of the cdf 3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x 求cdf逆函数的具体方法:...原因一: 因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆) 原因二: 这仅是我自己的直观理解,根据下图所示

    6.1K20

    概率论04 随机变量

    如何对样本空间的元素数值化是根据现实需求的。比如说,根据出现正面的次数,我们将赢取不同的奖励。那么在分析时,可以取“结果中正面的次数”为随机变量。这样一个随机变量将有2, 1, 0三种可能的取值。...该随机变量只能取离散的几个孤立值,这样一种随机变量称为离散随机变量。 映射关系如下: 实验结果 随机变量 HH 2 HT 1 TH 1 TT 0 我们通常用一个大写字母来表示一个随机变量,比如X。...等价的,我们可以用累积分布函数(CDF, cumulative distribution function)来表示随机变量的概率分布状况。...严格的定义为: image.png 我们可以绘制上面例子的CDF。 ? 这样的累积分布函数似乎并不比概率质量函数来得方便。但在后面,我们会很快看到它的优势。...观察一个很简单的连续随机分布。假设我们有一个随机数生成器,产生一个从0到1的实数,每个实数出现的概率相等。这样的一个分布被称为均匀分布(uniform distribution)。

    87080

    Android实现CoverFlow效果控件的实例代码

    计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个: pdf:连续随机分布的概率密度函数 pmf:离散随机分布的概率密度函数 cdf:累计分布函数 百分位函数(累计分布函数的逆函数...) 生存函数的逆函数(1 – cdf 的逆函数) 函数里面不仅能跟一个数据,还能跟一个数组。...目标: 已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1 步骤(具体解释后面会说)...: 1、根据pdf得到cdf 2、由cdf得到inverse of the cdf 3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x 求cdf逆函数的具体方法:...原因一: 因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆) 原因二: 这仅是我自己的直观理解,根据下图所示

    76820

    【深度干货】专知主题链路知识推荐#5-机器学习中似懂非懂的马尔科夫链蒙特卡洛采样(MCMC)入门教程01

    该代码显示了了如何展示概率密度和累积密度。它还展示了如何从该分布中抽取随机值以及如何使用hist函数可视化这些随机样本。代码的输出结果如图1.1所示。...1.2.1 用离散变量进行逆变换采样(Inverse transform sampling) 逆变换采样(也被成为逆变换方法)即给定累积分布函数的逆,可从任意概率分布中生成随机数。...该过程可以用于采样很多不同种类的分布,事实上,MATLAB实现很多随机变量生成方法也是基于该方法的。 在离散分布中,我们知道每个输出结果的概率。这种情况下,逆变换方法就需要一个简单的查找表。...给定一个非标准的离散分布的例子,我们使用一些实验数据来研究人类如何能产生一致的随机数(如Treisman and Faulkner,1987)。...这个重复采样随机偏差的过程,并与累积分布相比较,就会形成离散变量的逆变换方法的基础。注意我们应用了一个逆函数,因为做的是逆表的查找。 1.2.2 连续变量的逆变换采样 逆变换样方法也可以用于连续分布

    1.5K70

    【干货】计算机视觉实战系列04——用Python做图像处理

    从图片本身的角度看,直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同,把给定图像的直方图分布改变成“均匀”分布直方图分布。 那么如何进行图像均衡化呢?...对于任意一副灰度分布不均匀的图像,为了使图像直方图信息自动达到均匀分布,我们需要引入一个变换函数。...这个变换函数通常是图像中像素值的累积分布函数(cumulativate distribution function,简写为cdf,将像素值的范围映射到目标范围的归一化操作),累积函数和概率论中的累积分布函数类似...,最后在推广到离散的情况。...我们用r和s分别表示原图像灰度级和经直方图均衡化之后的图像灰度级,为了方便我们讨论,我们首先要做的事便是对s和r的归一化处理,使得: 对于一幅给定的图像,归一化之后灰度级分布在范围内。

    2.2K70

    斯坦福 CS228 概率图模型中文讲义 二、概率复习

    累积分布函数(CDF)是一个函数 ,它将概率测度指定为: 通过使用这个函数,可以计算任何事件的概率。...根据微分的性质,对于非常小的δx, CDF 和 PDF(当它们存在时)都可用于计算不同事件的概率。 但是应该强调的是,在任何给定点x处 PDF 的值不是该事件的概率,即 。...联合 CDF 和各变量的分布函数 和 的关系是: 这里,我们将 和 称为 的边缘累积分布函数。...3.4 条件分布 条件分布试图回答这个问题,当我们知道X必须是某个值x时,Y的概率分布是什么? 在离散情况下,给定Y的X的条件概率质量函数较简单: 其中 。...忽略这个技术问题,我们简单通过类比离散情况,来定义给定X = x的Y的条件概率密度: 其中 。

    42030

    概率论04 随机变量

    如何对样本空间的元素数值化是根据现实需求的。比如说,根据出现正面的次数,我们将赢取不同的奖励。那么在分析时,可以取“结果中正面的次数”为随机变量。这样一个随机变量将有2, 1, 0三种可能的取值。...该随机变量只能取离散的几个孤立值,这样一种随机变量称为离散随机变量。 映射关系如下: 实验结果 随机变量 HH 2 HT 1 TH 1 TT 0 我们通常用一个大写字母来表示一个随机变量,比如X。...等价的,我们可以用累积分布函数(CDF, cumulative distribution function)来表示随机变量的概率分布状况。...严格的定义为: $$F(x) = P(X \le x), -\infty < x < \infty$$ 我们可以绘制上面例子的CDF。 ? 这样的累积分布函数似乎并不比概率质量函数来得方便。...观察一个很简单的连续随机分布。假设我们有一个随机数生成器,产生一个从0到1的实数,每个实数出现的概率相等。这样的一个分布被称为均匀分布(uniform distribution)。

    91340
    领券